Review Topical Sections

Halophiles as a source of polyextremophilic α-amylase for industrial applications

  • Received: 15 December 2015 Accepted: 21 February 2016 Published: 24 February 2016
  • Halophiles are perceived as an excellent source of novel enzymes possessing inherent ability to function under saline and hypersaline environment conditions. The article covers and puts in perspective the structural and biocatalytic features of α-amylases from halophilic sources. The choice of α-amylase as the target enzyme is based on the fact that this is among the largest selling enzymes. Oligosaccharide synthesis is favored in presence of organic solvents and at high temperature. For this reason, the demand for α-amylases that are functional at high temperature and salt as well as stable towards organic solvents, is on the rise in recent years. Halophilic α-amylases are deemed to possess all the above characteristics. They are generally salt stable. In terms of water activity, saline environments are similar to non-aqueous systems. Therefore halophilic α-amylases also exhibit stability in organic solvents. In this context, the review encompasses α-amylase producing predominant halophilic microorganisms from saline habitats; strategies adopted for purification of halophilic α-amylase; their salient structural features and unique functional characteristics. Halophilic α-amylase applications and future aspects in research are also analyzed.

    Citation: Sumit Kumar, Jasneet Grewal, Ayesha Sadaf, R. Hemamalini, Sunil K. Khare. Halophiles as a source of polyextremophilic α-amylase for industrial applications[J]. AIMS Microbiology, 2016, 2(1): 1-26. doi: 10.3934/microbiol.2016.1.1

    Related Papers:

  • Halophiles are perceived as an excellent source of novel enzymes possessing inherent ability to function under saline and hypersaline environment conditions. The article covers and puts in perspective the structural and biocatalytic features of α-amylases from halophilic sources. The choice of α-amylase as the target enzyme is based on the fact that this is among the largest selling enzymes. Oligosaccharide synthesis is favored in presence of organic solvents and at high temperature. For this reason, the demand for α-amylases that are functional at high temperature and salt as well as stable towards organic solvents, is on the rise in recent years. Halophilic α-amylases are deemed to possess all the above characteristics. They are generally salt stable. In terms of water activity, saline environments are similar to non-aqueous systems. Therefore halophilic α-amylases also exhibit stability in organic solvents. In this context, the review encompasses α-amylase producing predominant halophilic microorganisms from saline habitats; strategies adopted for purification of halophilic α-amylase; their salient structural features and unique functional characteristics. Halophilic α-amylase applications and future aspects in research are also analyzed.


    加载中
    [1] Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3: 39–46. doi: 10.1016/S1367-5931(99)80008-8
    [2] Demirjian DC, Morı́s-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5: 144–151. doi: 10.1016/S1367-5931(00)00183-6
    [3] van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6: 213–218. doi: 10.1016/S1369-5274(03)00060-2
    [4] Elleuche S, Schroder C, Sahm K, et al. (2014) Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29: 116–123.
    [5] Raddadi N, Cherif A, Daffonchio D, et al. (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99: 7907–7913. doi: 10.1007/s00253-015-6874-9
    [6] Oren A (2002) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39: 1–7. doi: 10.1111/j.1574-6941.2002.tb00900.x
    [7] Ma Y, Galinski EA, Grant WD, et al. (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76: 6971–6981. doi: 10.1128/AEM.01868-10
    [8] Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11: 85–94. doi: 10.1007/BF00339138
    [9] Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83. doi: 10.1007/s007920100184
    [10] Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31: 825–834. doi: 10.1080/09593330903370026
    [11] Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8: 1920–1934. doi: 10.3390/md8061920
    [12] Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38: 1635–1647. doi: 10.1007/s10295-011-1021-9
    [13] Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotech 42: 223–235.
    [14] Karan R, Kumar S, Sinha R, et al. (2012) Halophilic microorganisms as sources of novel enzymes. Microorganisms in Sustainable Agriculture and Biotechnology: Springer. pp. 555–579.
    [15] Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar Drugs 13: 1925–1965. doi: 10.3390/md13041925
    [16] Ryu K, Kim J, Dordick JS (1994) Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb Technol 16: 266–275. doi: 10.1016/0141-0229(94)90165-1
    [17] de Lourdes Moreno M, Perez D, Garcia MT, et al. (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life (Basel) 3: 38–51.
    [18] Doukyu N, Yamagishi W, Kuwahara H, et al. (2007) Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25. Extremophiles 11: 781–788. doi: 10.1007/s00792-007-0096-8
    [19] Kumar S, Khare SK (2012) Purification and characterization of maltooligosaccharide-forming alpha-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresour Technol 116: 247–251. doi: 10.1016/j.biortech.2011.11.109
    [20] Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4: 91–98. doi: 10.1007/s007920050142
    [21] Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19: 261–278. doi: 10.1016/S0734-9750(01)00061-1
    [22] Debashish G, Malay S, Barindra S, et al. (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96: 189–218.
    [23] DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25: 120–126. doi: 10.1016/j.mib.2015.05.009
    [24] Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96: 219–262.
    [25] Tokunaga H, Arakawa T, Tokunaga M (2008) Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17: 1603–1610. doi: 10.1110/ps.035725.108
    [26] Tokunaga H, Saito S, Sakai K, et al. (2010) Halophilic β-lactamase as a new solubility- and folding-enhancing tag protein: production of native human interleukin 1α and human neutrophil α-defensin. Appl Microbiol Biotechnol 86: 649–658. doi: 10.1007/s00253-009-2325-9
    [27] Yamaguchi R, Tokunaga H, Ishibashi M, et al. (2011) Salt-dependent thermo-reversible alpha-amylase: cloning and characterization of halophilic alpha-amylase from moderately halophilic bacterium, Kocuria varians. Appl Microbiol Biotechnol 89: 673–684. doi: 10.1007/s00253-010-2882-y
    [28] Alsafadi D, Paradisi F (2013) Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles 17: 115–122. doi: 10.1007/s00792-012-0498-0
    [29] Arai S, Yonezawa Y, Ishibashi M, et al. (2014) Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593. Acta Crystallogr D Biol Crystallogr 70: 811–820. doi: 10.1107/S1399004713033609
    [30] Mesbah NM, Wiegel J (2014) Halophilic alkali- and thermostable amylase from a novel polyextremophilic Amphibacillus sp. NM-Ra2. Int J Biol Macromol 70: 222–229. doi: 10.1016/j.ijbiomac.2014.06.053
    [31] Chang J, Lee YS, Fang SJ, et al. (2013) Recombinant expression and characterization of an organic-solvent-tolerant alpha-amylase from Exiguobacterium sp. DAU5. Appl Biochem Biotechnol 169: 1870–1883. doi: 10.1007/s12010-013-0101-x
    [32] Chakraborty S, Khopade A, Biao R, et al. (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9. J Mol Catal B-Enzym 68: 52–58. doi: 10.1016/j.molcatb.2010.09.009
    [33] Shafiei M, Ziaee AA, Amoozegar MA (2010) Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem 45: 694–699. doi: 10.1016/j.procbio.2010.01.003
    [34] Gunny AA, Arbain D, Edwin Gumba R, et al. (2014) Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses. Bioresour Technol 155: 177–181. doi: 10.1016/j.biortech.2013.12.101
    [35] Li X, Wang HL, Li T, et al. (2012) Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnol Lett 34: 1531–1536. doi: 10.1007/s10529-012-0938-z
    [36] Shanmughapriya S, Kiran GS, Selvin J, et al. (2010) Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 162: 625–640. doi: 10.1007/s12010-009-8747-0
    [37] Essghaier B, Rouaissi M, Boudabous A, et al. (2010) Production and partial characterization of chitinase from a halotolerant Planococcus rifitoensis strain M2-26. World J Microb Biot 26: 977–984. doi: 10.1007/s11274-009-0259-0
    [38] Camacho RM, Mateos JC, Gonzalez-Reynoso O, et al. (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36: 901–909. doi: 10.1007/s10295-009-0568-1
    [39] Karan R, Capes MD, DasSarma P, et al. (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic beta-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13: 3. doi: 10.1186/1472-6750-13-3
    [40] Holmes ML, Scopes RK, Moritz RL, et al. (1997) Purification and analysis of an extremely halophilic beta-galactosidase from Haloferax alicantei. Biochim Biophys Acta 1337: 276–286. doi: 10.1016/S0167-4838(96)00174-4
    [41] Li X, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol (Praha) 59: 455–463. doi: 10.1007/s12223-014-0320-8
    [42] Pérez D, Martín S, Fernández-Lorente G, et al. (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6: e23325. doi: 10.1371/journal.pone.0023325
    [43] de Lourdes Moreno M, García MT, Ventosa A, et al. (2009) Characterization of Salicola sp. IC10, a lipase-and protease-producing extreme halophile. FEMS Microbiol Ecol 68: 59–71.
    [44] Onishi H, Mori T, Takeuchi S, et al. (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization. Appl Environ Microb 45: 24–30.
    [45] Kamekura M, Onishi H (1974) Halophilic nuclease from a moderately halophilic Micrococcus varians. J Bacteriol 119: 339–344.
    [46] Sinha R, Khare SK (2013) Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity. Bioresour Technol 145: 357–361.
    [47] Karan R, Singh SP, Kapoor S, et al. (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. N Biotechnol 28: 136–145.
    [48] Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109: 44–53.
    [49] Poosarla VG, Chandra TS (2014) Purification and characterization of novel halo-acid-alkali-thermo-stable xylanase from Gracilibacillus sp. TSCPVG. Appl Biochem Biotechnol 173: 1375–1390. doi: 10.1007/s12010-014-0939-6
    [50] Hung K-S, Liu S-M, Tzou W-S, et al. (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46: 1257–1263. doi: 10.1016/j.procbio.2011.02.009
    [51] Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7: 423–431. doi: 10.1007/s00792-003-0342-7
    [52] Delgado-Garcia M, Valdivia-Urdiales B, Aguilar-Gonzalez CN, et al. (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92: 2575–2580. doi: 10.1002/jsfa.5860
    [53] Reed CJ, Lewis H, Trejo E, et al. (2013) Protein adaptations in archaeal extremophiles. Archaea 2013: 373275.
    [54] Pandey A, Nigam P, Soccol C, et al. (2000) Advances in microbial amylases. Biotechnol Appl Biochem (Pt 2): 135–152.
    [55] Gupta R, Gigras P, Mohapatra H, et al. (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38: 1599–1616. doi: 10.1016/S0032-9592(03)00053-0
    [56] Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, et al. (2006) α-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44: 173–184.
    [57] Souza PMd (2010) Application of microbial α-amylase in industry-A review. Braz J Microbiol 41: 850–861.
    [58] Sharma A, Satyanarayana T (2013) Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications. Process Biochem 48: 201–211. doi: 10.1016/j.procbio.2012.12.018
    [59] MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta 1546: 1–20. doi: 10.1016/S0167-4838(00)00302-2
    [60] Kanal H, Kobayashi T, Aono R, et al. (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45: 762–766. doi: 10.1099/00207713-45-4-762
    [61] Coronado M, Vargas C, Hofemeister J, et al. (2000) Production and biochemical characterization of an alpha-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183: 67–71.
    [62] Mijts BN, Patel BK (2002) Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148: 2343–2349. doi: 10.1099/00221287-148-8-2343
    [63] Perez-Pomares F, Bautista V, Ferrer J, et al. (2003) Alpha-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7: 299–306. doi: 10.1007/s00792-003-0327-6
    [64] Kumar S, Khare SK (2015) Chloride Activated Halophilic alpha-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis. Enzyme Res 2015: 859485.
    [65] Good WA, Hartman PA (1970) Properties of the amylase from Halobacterium halobium. J Bacteriol 104: 601–603.
    [66] Onishi H (1972) Halophilic amylase from a moderately halophilic Micrococcus. J Bacteriol 109: 570–574.
    [67] Onishi H, Hidaka O (1978) Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Can J Microbiol 24: 1017–1023. doi: 10.1139/m78-169
    [68] Sanchez-Porro C, Martin S, Mellado E, et al. (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94: 295–300. doi: 10.1046/j.1365-2672.2003.01834.x
    [69] Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36: 333–340. doi: 10.1007/s10295-008-0500-0
    [70] Martins RF, Davids W, Abu Al-Soud W, et al. (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5: 135–144. doi: 10.1007/s007920100183
    [71] Birbir M, Ogan A, Calli B, et al. (2004) Enzyme characteristics of extremely halophilic archaeal community in Tuzkoy Salt Mine, Turkey. World J Microb Biot 20: 613–621. doi: 10.1023/B:WIBI.0000043185.06176.b8
    [72] Dang H, Zhu H, Wang J, et al. (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microb Biot 25: 71–79. doi: 10.1007/s11274-008-9865-5
    [73] Baati H, Amdouni R, Gharsallah N, et al. (2010) Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr Microbiol 60: 157–161. doi: 10.1007/s00284-009-9516-6
    [74] Moreno ML, Piubeli F, Bonfa MR, et al. (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113: 550–559. doi: 10.1111/j.1365-2672.2012.05366.x
    [75] Nercessian D, Di Meglio L, De Castro R, et al. (2015) Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 19: 1133–1143. doi: 10.1007/s00792-015-0785-7
    [76] Cao L, Yun W, Tang S, et al. (2009) [Biodiversity and enzyme screening of actinomycetes from Hami lake]. Wei Sheng Wu Xue Bao 49: 287–293.
    [77] Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microb Biot 25: 2103–2111. doi: 10.1007/s11274-009-0113-4
    [78] Fukushima T, Mizuki T, Echigo A, et al. (2005) Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85–89. doi: 10.1007/s00792-004-0423-2
    [79] Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9: 487–495. doi: 10.1007/s00792-005-0471-2
    [80] Moshfegh M, Shahverdi AR, Zarrini G, et al. (2013) Biochemical characterization of an extracellular polyextremophilic alpha-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17: 677–687. doi: 10.1007/s00792-013-0551-7
    [81] Deutch CE (2002) Characterization of a salt-tolerant extracellular α-amylase from Bacillus dipsosauri. Lett Appl Microbiol 35: 78–84. doi: 10.1046/j.1472-765X.2002.01142.x
    [82] Amoozegar MA, Malekzadeh F, Malik KA (2003) Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52: 353–359. doi: 10.1016/S0167-7012(02)00191-4
    [83] Kiran KK, Chandra TS (2008) Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK. Appl Microbiol Biotechnol 77: 1023–1031. doi: 10.1007/s00253-007-1250-z
    [84] Prakash B, Vidyasagar M, Madhukumar M, et al. (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44: 210–215. doi: 10.1016/j.procbio.2008.10.013
    [85] Li X, Yu HY (2012) Characterization of an organic solvent-tolerant alpha-amylase from a halophilic isolate, Thalassobacillus sp. LY18. Folia Microbiol (Praha) 57: 447–453. doi: 10.1007/s12223-012-0160-3
    [86] Ardakani MR, Poshtkouhian A, Amoozegar MA, et al. (2012) Isolation of moderately halophilic Pseudoalteromonas producing extracellular hydrolytic enzymes from persian gulf. Indian J Microbiol 52: 94–98. doi: 10.1007/s12088-011-0243-x
    [87] Kumar S, Karan R, Kapoor S, et al. (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43: 1595–1603. doi: 10.1590/S1517-83822012000400044
    [88] Chakraborty S, Khopade A, Kokare C, et al. (2009) Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J Mol Catal B-Enzym 58: 17–23. doi: 10.1016/j.molcatb.2008.10.011
    [89] Mohapatra B, Banerjee U, Bapuji M (1998) Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J Biotechnol 60: 113–117.
    [90] Kobayashi T, Kanai H, Hayashi T, et al. (1992) Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174: 3439–3444.
    [91] Patel S, Jain N, Madamwar D (1993) Production of alpha-amylase from Halobacterium halobium. World J Microbiol Biotechnol 9: 25–28. doi: 10.1007/BF00656510
    [92] Khire JM (1994) Production of moderately halophilic amylase by newly isolated Micrococcus sp. 4 from a salt‐pan. Lett Appl Microbiol 19: 210–212. doi: 10.1111/j.1472-765X.1994.tb00945.x
    [93] Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresource Technol 90: 207–214. doi: 10.1016/S0960-8524(03)00110-X
    [94] Onishi H, Sonoda K (1979) Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl Environ Microbiol 38: 616–620.
    [95] Yoon SA, Ryu SI, Lee SB, et al. (2008) Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus. J Microbiol Biotechnol 18: 457–464.
    [96] Ali I, Akbar A, Yanwisetpakdee B, et al. (2014) Purification, characterization, and potential of saline waste water remediation of a polyextremophilic alpha-amylase from an obligate halophilic Aspergillus gracilis. Biomed Res Int 2014: 106937.
    [97] Kobayashi T, Kanai H, Aono R, et al. (1994) Cloning, expression, and nucleotide sequence of the alpha-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 176: 5131–5134.
    [98] Coronado MJ, Vargas C, Mellado E, et al. (2000) The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146 ( Pt 4): 861–868.
    [99] Onodera M, Yatsunami R, Tsukimura W, et al. (2013) Gene analysis, expression, and characterization of an intracellular alpha-amylase from the extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 77: 281–288. doi: 10.1271/bbb.120693
    [100] Wei Y, Wang X, Liang J, et al. (2013) Identification of a halophilic alpha-amylase gene from Escherichia coli JM109 and characterization of the recombinant enzyme. Biotechnol Lett 35: 1061–1065. doi: 10.1007/s10529-013-1175-9
    [101] Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18: 271–281. doi: 10.1007/s00792-013-0614-9
    [102] Feller G, Lonhienne T, Deroanne C, et al. (1992) Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267: 5217–5221.
    [103] Srimathi S, Jayaraman G, Feller G, et al. (2007) Intrinsic halotolerance of the psychrophilic alpha-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11: 505–515. doi: 10.1007/s00792-007-0062-5
    [104] Kumar S, Khan RH, Khare SK (2015) Structural Elucidation and Molecular Characterization of Marinobacter sp. alpha -Amylase. Prep Biochem Biotechnol.
    [105] Da Lage JL, Feller G, Janecek S (2004) Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the alpha-amylase model. Cell Mol Life Sci 61: 97–109. doi: 10.1007/s00018-003-3334-y
    [106] Aghajari N, Feller G, Gerday C, et al. (2002) Structural basis of α‐amylase activation by chloride. Protein Sci 11: 1435–1441. doi: 10.1110/ps.0202602
    [107] Maurus R, Begum A, Williams LK, et al. (2008) Alternative Catalytic Anions Differentially Modulate Human α-Amylase Activity and Specificity. Biochemistry 47: 3332–3344. doi: 10.1021/bi701652t
    [108] Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Phys A 117: 307–312.
    [109] Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38: 272–290.
    [110] Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86: 155–164. doi: 10.1016/S0301-4622(00)00126-5
    [111] Bolhuis A, Kwan D, Thomas JR (2008) Halophilic adaptations of proteins. Protein Adaptation in Extremophiles. 71–104.
    [112] Tan TC, Mijts BN, Swaminathan K, et al. (2008) Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. J Mol Biol 378: 852–870. doi: 10.1016/j.jmb.2008.02.041
    [113] Zorgani MA, Patron K, Desvaux M (2014) New insight in the structural features of haloadaptation in alpha-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface. J Comput Aided Mol Des 28: 721–734. doi: 10.1007/s10822-014-9754-y
    [114] Gurung N, Ray S, Bose S, et al. (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013: 329121.
    [115] Ballschmiter M, Fütterer O, Liebl W (2006) Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 72: 2206–2211. doi: 10.1128/AEM.72.3.2206-2211.2006
    [116] Mountfort DO, Rainey FA, Burghardt J, et al. (1998) Psychromonas antarcticus gen. nov., sp. nov., A new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, antarctica. Arch Microbiol 169: 231–238.
    [117] Shafiei M, Ziaee AA, Amoozegar MA (2011) Purification and characterization of an organic-solvent-tolerant halophilic alpha-amylase from the moderately halophilic Nesterenkonia sp. strain F. J Ind Microbiol Biotechnol 38: 275–281. doi: 10.1007/s10295-010-0770-1
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7984) PDF downloads(1572) Cited by(22)

Article outline

Figures and Tables

Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog