Citation: Sumit Kumar, Jasneet Grewal, Ayesha Sadaf, R. Hemamalini, Sunil K. Khare. Halophiles as a source of polyextremophilic α-amylase for industrial applications[J]. AIMS Microbiology, 2016, 2(1): 1-26. doi: 10.3934/microbiol.2016.1.1
[1] | Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3: 39–46. doi: 10.1016/S1367-5931(99)80008-8 |
[2] | Demirjian DC, Morı́s-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5: 144–151. doi: 10.1016/S1367-5931(00)00183-6 |
[3] | van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6: 213–218. doi: 10.1016/S1369-5274(03)00060-2 |
[4] | Elleuche S, Schroder C, Sahm K, et al. (2014) Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29: 116–123. |
[5] | Raddadi N, Cherif A, Daffonchio D, et al. (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99: 7907–7913. doi: 10.1007/s00253-015-6874-9 |
[6] | Oren A (2002) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39: 1–7. doi: 10.1111/j.1574-6941.2002.tb00900.x |
[7] | Ma Y, Galinski EA, Grant WD, et al. (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76: 6971–6981. doi: 10.1128/AEM.01868-10 |
[8] | Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11: 85–94. doi: 10.1007/BF00339138 |
[9] | Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83. doi: 10.1007/s007920100184 |
[10] | Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31: 825–834. doi: 10.1080/09593330903370026 |
[11] | Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8: 1920–1934. doi: 10.3390/md8061920 |
[12] | Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38: 1635–1647. doi: 10.1007/s10295-011-1021-9 |
[13] | Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotech 42: 223–235. |
[14] | Karan R, Kumar S, Sinha R, et al. (2012) Halophilic microorganisms as sources of novel enzymes. Microorganisms in Sustainable Agriculture and Biotechnology: Springer. pp. 555–579. |
[15] | Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar Drugs 13: 1925–1965. doi: 10.3390/md13041925 |
[16] | Ryu K, Kim J, Dordick JS (1994) Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzyme Microb Technol 16: 266–275. doi: 10.1016/0141-0229(94)90165-1 |
[17] | de Lourdes Moreno M, Perez D, Garcia MT, et al. (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life (Basel) 3: 38–51. |
[18] | Doukyu N, Yamagishi W, Kuwahara H, et al. (2007) Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25. Extremophiles 11: 781–788. doi: 10.1007/s00792-007-0096-8 |
[19] | Kumar S, Khare SK (2012) Purification and characterization of maltooligosaccharide-forming alpha-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresour Technol 116: 247–251. doi: 10.1016/j.biortech.2011.11.109 |
[20] | Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4: 91–98. doi: 10.1007/s007920050142 |
[21] | Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19: 261–278. doi: 10.1016/S0734-9750(01)00061-1 |
[22] | Debashish G, Malay S, Barindra S, et al. (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96: 189–218. |
[23] | DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25: 120–126. doi: 10.1016/j.mib.2015.05.009 |
[24] | Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96: 219–262. |
[25] | Tokunaga H, Arakawa T, Tokunaga M (2008) Engineering of halophilic enzymes: two acidic amino acid residues at the carboxy-terminal region confer halophilic characteristics to Halomonas and Pseudomonas nucleoside diphosphate kinases. Protein Sci 17: 1603–1610. doi: 10.1110/ps.035725.108 |
[26] | Tokunaga H, Saito S, Sakai K, et al. (2010) Halophilic β-lactamase as a new solubility- and folding-enhancing tag protein: production of native human interleukin 1α and human neutrophil α-defensin. Appl Microbiol Biotechnol 86: 649–658. doi: 10.1007/s00253-009-2325-9 |
[27] | Yamaguchi R, Tokunaga H, Ishibashi M, et al. (2011) Salt-dependent thermo-reversible alpha-amylase: cloning and characterization of halophilic alpha-amylase from moderately halophilic bacterium, Kocuria varians. Appl Microbiol Biotechnol 89: 673–684. doi: 10.1007/s00253-010-2882-y |
[28] | Alsafadi D, Paradisi F (2013) Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles 17: 115–122. doi: 10.1007/s00792-012-0498-0 |
[29] | Arai S, Yonezawa Y, Ishibashi M, et al. (2014) Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593. Acta Crystallogr D Biol Crystallogr 70: 811–820. doi: 10.1107/S1399004713033609 |
[30] | Mesbah NM, Wiegel J (2014) Halophilic alkali- and thermostable amylase from a novel polyextremophilic Amphibacillus sp. NM-Ra2. Int J Biol Macromol 70: 222–229. doi: 10.1016/j.ijbiomac.2014.06.053 |
[31] | Chang J, Lee YS, Fang SJ, et al. (2013) Recombinant expression and characterization of an organic-solvent-tolerant alpha-amylase from Exiguobacterium sp. DAU5. Appl Biochem Biotechnol 169: 1870–1883. doi: 10.1007/s12010-013-0101-x |
[32] | Chakraborty S, Khopade A, Biao R, et al. (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9. J Mol Catal B-Enzym 68: 52–58. doi: 10.1016/j.molcatb.2010.09.009 |
[33] | Shafiei M, Ziaee AA, Amoozegar MA (2010) Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem 45: 694–699. doi: 10.1016/j.procbio.2010.01.003 |
[34] | Gunny AA, Arbain D, Edwin Gumba R, et al. (2014) Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses. Bioresour Technol 155: 177–181. doi: 10.1016/j.biortech.2013.12.101 |
[35] | Li X, Wang HL, Li T, et al. (2012) Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnol Lett 34: 1531–1536. doi: 10.1007/s10529-012-0938-z |
[36] | Shanmughapriya S, Kiran GS, Selvin J, et al. (2010) Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 162: 625–640. doi: 10.1007/s12010-009-8747-0 |
[37] | Essghaier B, Rouaissi M, Boudabous A, et al. (2010) Production and partial characterization of chitinase from a halotolerant Planococcus rifitoensis strain M2-26. World J Microb Biot 26: 977–984. doi: 10.1007/s11274-009-0259-0 |
[38] | Camacho RM, Mateos JC, Gonzalez-Reynoso O, et al. (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36: 901–909. doi: 10.1007/s10295-009-0568-1 |
[39] | Karan R, Capes MD, DasSarma P, et al. (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic beta-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13: 3. doi: 10.1186/1472-6750-13-3 |
[40] | Holmes ML, Scopes RK, Moritz RL, et al. (1997) Purification and analysis of an extremely halophilic beta-galactosidase from Haloferax alicantei. Biochim Biophys Acta 1337: 276–286. doi: 10.1016/S0167-4838(96)00174-4 |
[41] | Li X, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol (Praha) 59: 455–463. doi: 10.1007/s12223-014-0320-8 |
[42] | Pérez D, Martín S, Fernández-Lorente G, et al. (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6: e23325. doi: 10.1371/journal.pone.0023325 |
[43] | de Lourdes Moreno M, García MT, Ventosa A, et al. (2009) Characterization of Salicola sp. IC10, a lipase-and protease-producing extreme halophile. FEMS Microbiol Ecol 68: 59–71. |
[44] | Onishi H, Mori T, Takeuchi S, et al. (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization. Appl Environ Microb 45: 24–30. |
[45] | Kamekura M, Onishi H (1974) Halophilic nuclease from a moderately halophilic Micrococcus varians. J Bacteriol 119: 339–344. |
[46] | Sinha R, Khare SK (2013) Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity. Bioresour Technol 145: 357–361. |
[47] | Karan R, Singh SP, Kapoor S, et al. (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. N Biotechnol 28: 136–145. |
[48] | Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109: 44–53. |
[49] | Poosarla VG, Chandra TS (2014) Purification and characterization of novel halo-acid-alkali-thermo-stable xylanase from Gracilibacillus sp. TSCPVG. Appl Biochem Biotechnol 173: 1375–1390. doi: 10.1007/s12010-014-0939-6 |
[50] | Hung K-S, Liu S-M, Tzou W-S, et al. (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46: 1257–1263. doi: 10.1016/j.procbio.2011.02.009 |
[51] | Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7: 423–431. doi: 10.1007/s00792-003-0342-7 |
[52] | Delgado-Garcia M, Valdivia-Urdiales B, Aguilar-Gonzalez CN, et al. (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92: 2575–2580. doi: 10.1002/jsfa.5860 |
[53] | Reed CJ, Lewis H, Trejo E, et al. (2013) Protein adaptations in archaeal extremophiles. Archaea 2013: 373275. |
[54] | Pandey A, Nigam P, Soccol C, et al. (2000) Advances in microbial amylases. Biotechnol Appl Biochem (Pt 2): 135–152. |
[55] | Gupta R, Gigras P, Mohapatra H, et al. (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38: 1599–1616. doi: 10.1016/S0032-9592(03)00053-0 |
[56] | Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, et al. (2006) α-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44: 173–184. |
[57] | Souza PMd (2010) Application of microbial α-amylase in industry-A review. Braz J Microbiol 41: 850–861. |
[58] | Sharma A, Satyanarayana T (2013) Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications. Process Biochem 48: 201–211. doi: 10.1016/j.procbio.2012.12.018 |
[59] | MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta 1546: 1–20. doi: 10.1016/S0167-4838(00)00302-2 |
[60] | Kanal H, Kobayashi T, Aono R, et al. (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45: 762–766. doi: 10.1099/00207713-45-4-762 |
[61] | Coronado M, Vargas C, Hofemeister J, et al. (2000) Production and biochemical characterization of an alpha-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183: 67–71. |
[62] | Mijts BN, Patel BK (2002) Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148: 2343–2349. doi: 10.1099/00221287-148-8-2343 |
[63] | Perez-Pomares F, Bautista V, Ferrer J, et al. (2003) Alpha-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7: 299–306. doi: 10.1007/s00792-003-0327-6 |
[64] | Kumar S, Khare SK (2015) Chloride Activated Halophilic alpha-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis. Enzyme Res 2015: 859485. |
[65] | Good WA, Hartman PA (1970) Properties of the amylase from Halobacterium halobium. J Bacteriol 104: 601–603. |
[66] | Onishi H (1972) Halophilic amylase from a moderately halophilic Micrococcus. J Bacteriol 109: 570–574. |
[67] | Onishi H, Hidaka O (1978) Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Can J Microbiol 24: 1017–1023. doi: 10.1139/m78-169 |
[68] | Sanchez-Porro C, Martin S, Mellado E, et al. (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94: 295–300. doi: 10.1046/j.1365-2672.2003.01834.x |
[69] | Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36: 333–340. doi: 10.1007/s10295-008-0500-0 |
[70] | Martins RF, Davids W, Abu Al-Soud W, et al. (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5: 135–144. doi: 10.1007/s007920100183 |
[71] | Birbir M, Ogan A, Calli B, et al. (2004) Enzyme characteristics of extremely halophilic archaeal community in Tuzkoy Salt Mine, Turkey. World J Microb Biot 20: 613–621. doi: 10.1023/B:WIBI.0000043185.06176.b8 |
[72] | Dang H, Zhu H, Wang J, et al. (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microb Biot 25: 71–79. doi: 10.1007/s11274-008-9865-5 |
[73] | Baati H, Amdouni R, Gharsallah N, et al. (2010) Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr Microbiol 60: 157–161. doi: 10.1007/s00284-009-9516-6 |
[74] | Moreno ML, Piubeli F, Bonfa MR, et al. (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113: 550–559. doi: 10.1111/j.1365-2672.2012.05366.x |
[75] | Nercessian D, Di Meglio L, De Castro R, et al. (2015) Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 19: 1133–1143. doi: 10.1007/s00792-015-0785-7 |
[76] | Cao L, Yun W, Tang S, et al. (2009) [Biodiversity and enzyme screening of actinomycetes from Hami lake]. Wei Sheng Wu Xue Bao 49: 287–293. |
[77] | Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microb Biot 25: 2103–2111. doi: 10.1007/s11274-009-0113-4 |
[78] | Fukushima T, Mizuki T, Echigo A, et al. (2005) Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85–89. doi: 10.1007/s00792-004-0423-2 |
[79] | Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9: 487–495. doi: 10.1007/s00792-005-0471-2 |
[80] | Moshfegh M, Shahverdi AR, Zarrini G, et al. (2013) Biochemical characterization of an extracellular polyextremophilic alpha-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17: 677–687. doi: 10.1007/s00792-013-0551-7 |
[81] | Deutch CE (2002) Characterization of a salt-tolerant extracellular α-amylase from Bacillus dipsosauri. Lett Appl Microbiol 35: 78–84. doi: 10.1046/j.1472-765X.2002.01142.x |
[82] | Amoozegar MA, Malekzadeh F, Malik KA (2003) Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52: 353–359. doi: 10.1016/S0167-7012(02)00191-4 |
[83] | Kiran KK, Chandra TS (2008) Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK. Appl Microbiol Biotechnol 77: 1023–1031. doi: 10.1007/s00253-007-1250-z |
[84] | Prakash B, Vidyasagar M, Madhukumar M, et al. (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44: 210–215. doi: 10.1016/j.procbio.2008.10.013 |
[85] | Li X, Yu HY (2012) Characterization of an organic solvent-tolerant alpha-amylase from a halophilic isolate, Thalassobacillus sp. LY18. Folia Microbiol (Praha) 57: 447–453. doi: 10.1007/s12223-012-0160-3 |
[86] | Ardakani MR, Poshtkouhian A, Amoozegar MA, et al. (2012) Isolation of moderately halophilic Pseudoalteromonas producing extracellular hydrolytic enzymes from persian gulf. Indian J Microbiol 52: 94–98. doi: 10.1007/s12088-011-0243-x |
[87] | Kumar S, Karan R, Kapoor S, et al. (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43: 1595–1603. doi: 10.1590/S1517-83822012000400044 |
[88] | Chakraborty S, Khopade A, Kokare C, et al. (2009) Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J Mol Catal B-Enzym 58: 17–23. doi: 10.1016/j.molcatb.2008.10.011 |
[89] | Mohapatra B, Banerjee U, Bapuji M (1998) Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J Biotechnol 60: 113–117. |
[90] | Kobayashi T, Kanai H, Hayashi T, et al. (1992) Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174: 3439–3444. |
[91] | Patel S, Jain N, Madamwar D (1993) Production of alpha-amylase from Halobacterium halobium. World J Microbiol Biotechnol 9: 25–28. doi: 10.1007/BF00656510 |
[92] | Khire JM (1994) Production of moderately halophilic amylase by newly isolated Micrococcus sp. 4 from a salt‐pan. Lett Appl Microbiol 19: 210–212. doi: 10.1111/j.1472-765X.1994.tb00945.x |
[93] | Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresource Technol 90: 207–214. doi: 10.1016/S0960-8524(03)00110-X |
[94] | Onishi H, Sonoda K (1979) Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl Environ Microbiol 38: 616–620. |
[95] | Yoon SA, Ryu SI, Lee SB, et al. (2008) Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus. J Microbiol Biotechnol 18: 457–464. |
[96] | Ali I, Akbar A, Yanwisetpakdee B, et al. (2014) Purification, characterization, and potential of saline waste water remediation of a polyextremophilic alpha-amylase from an obligate halophilic Aspergillus gracilis. Biomed Res Int 2014: 106937. |
[97] | Kobayashi T, Kanai H, Aono R, et al. (1994) Cloning, expression, and nucleotide sequence of the alpha-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol 176: 5131–5134. |
[98] | Coronado MJ, Vargas C, Mellado E, et al. (2000) The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146 ( Pt 4): 861–868. |
[99] | Onodera M, Yatsunami R, Tsukimura W, et al. (2013) Gene analysis, expression, and characterization of an intracellular alpha-amylase from the extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 77: 281–288. doi: 10.1271/bbb.120693 |
[100] | Wei Y, Wang X, Liang J, et al. (2013) Identification of a halophilic alpha-amylase gene from Escherichia coli JM109 and characterization of the recombinant enzyme. Biotechnol Lett 35: 1061–1065. doi: 10.1007/s10529-013-1175-9 |
[101] | Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18: 271–281. doi: 10.1007/s00792-013-0614-9 |
[102] | Feller G, Lonhienne T, Deroanne C, et al. (1992) Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267: 5217–5221. |
[103] | Srimathi S, Jayaraman G, Feller G, et al. (2007) Intrinsic halotolerance of the psychrophilic alpha-amylase from Pseudoalteromonas haloplanktis. Extremophiles 11: 505–515. doi: 10.1007/s00792-007-0062-5 |
[104] | Kumar S, Khan RH, Khare SK (2015) Structural Elucidation and Molecular Characterization of Marinobacter sp. alpha -Amylase. Prep Biochem Biotechnol. |
[105] | Da Lage JL, Feller G, Janecek S (2004) Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the alpha-amylase model. Cell Mol Life Sci 61: 97–109. doi: 10.1007/s00018-003-3334-y |
[106] | Aghajari N, Feller G, Gerday C, et al. (2002) Structural basis of α‐amylase activation by chloride. Protein Sci 11: 1435–1441. doi: 10.1110/ps.0202602 |
[107] | Maurus R, Begum A, Williams LK, et al. (2008) Alternative Catalytic Anions Differentially Modulate Human α-Amylase Activity and Specificity. Biochemistry 47: 3332–3344. doi: 10.1021/bi701652t |
[108] | Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Phys A 117: 307–312. |
[109] | Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38: 272–290. |
[110] | Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86: 155–164. doi: 10.1016/S0301-4622(00)00126-5 |
[111] | Bolhuis A, Kwan D, Thomas JR (2008) Halophilic adaptations of proteins. Protein Adaptation in Extremophiles. 71–104. |
[112] | Tan TC, Mijts BN, Swaminathan K, et al. (2008) Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. J Mol Biol 378: 852–870. doi: 10.1016/j.jmb.2008.02.041 |
[113] | Zorgani MA, Patron K, Desvaux M (2014) New insight in the structural features of haloadaptation in alpha-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface. J Comput Aided Mol Des 28: 721–734. doi: 10.1007/s10822-014-9754-y |
[114] | Gurung N, Ray S, Bose S, et al. (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013: 329121. |
[115] | Ballschmiter M, Fütterer O, Liebl W (2006) Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 72: 2206–2211. doi: 10.1128/AEM.72.3.2206-2211.2006 |
[116] | Mountfort DO, Rainey FA, Burghardt J, et al. (1998) Psychromonas antarcticus gen. nov., sp. nov., A new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, antarctica. Arch Microbiol 169: 231–238. |
[117] | Shafiei M, Ziaee AA, Amoozegar MA (2011) Purification and characterization of an organic-solvent-tolerant halophilic alpha-amylase from the moderately halophilic Nesterenkonia sp. strain F. J Ind Microbiol Biotechnol 38: 275–281. doi: 10.1007/s10295-010-0770-1 |