Citation: Susannah P. Guenther, Karen S. Gibb, Alea M. Rose, Mirjam Kaestli, Keith A. Christian. Differences in structure of northern Australian hypolithic communities according to location, rock type, and gross morphology[J]. AIMS Microbiology, 2018, 4(3): 469-481. doi: 10.3934/microbiol.2018.3.469
[1] | Cowan DA, Khan N, Pointing SB, et al. (2010) Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22: 714–720. doi: 10.1017/S0954102010000507 |
[2] | Ferrenberg S, Tucker CL, Reed SC (2017) Biological soil crusts: diminutive communities of potential global importance. Front Ecol Environ 5: 160–167. doi: 10.3389/fevo.2017.00160 |
[3] | Tomitani A, Knoll AH, Cavanaugh CM, et al. (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. P Natl Acad Sci USA 103: 5442–5447. doi: 10.1073/pnas.0600999103 |
[4] | Makhalanyane TP, Valverde A, Birkeland NK, et al. (2013) Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J 7: 2080–2090. doi: 10.1038/ismej.2013.94 |
[5] | Khan N, Tuffin M, Stafford W, et al. (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34: 1657–1668. doi: 10.1007/s00300-011-1061-7 |
[6] | Tracy CR, Streten-Joyce C, Dalton R, et al. (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12: 592–607. doi: 10.1111/j.1462-2920.2009.02098.x |
[7] | Warren-Rhodes KA, McKay CP, Boyle LN, et al. (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J Geophys Res-Biogeo 118: 1451–1460. doi: 10.1002/jgrg.20117 |
[8] | McKay CP (2016) Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity. Global Ecol Conserv 6: 145–151. doi: 10.1016/j.gecco.2016.02.010 |
[9] | Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10: 551–562. doi: 10.1038/nrmicro2831 |
[10] | Cowan DA, Pointing SB, Stevens MI, et al. (2011) Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biol 34: 307–311. doi: 10.1007/s00300-010-0872-2 |
[11] | Stomeo F, Valverde A, Pointing SB, et al. (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17: 329–337. doi: 10.1007/s00792-013-0519-7 |
[12] | Valverde A, Makhalanyane TP, Seely M, et al. (2015) Cyanobacteria drive community composition and functionality in rock-soil interface communities. Mol Ecol 24: 812–821. doi: 10.1111/mec.13068 |
[13] | Chan Y, Lacap DC, Lau MC, et al. (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14: 2272–2282. doi: 10.1111/j.1462-2920.2012.02821.x |
[14] | Bates ST, Cropsey GW, Caporaso JG, et al. (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microb 77: 1309–1314. doi: 10.1128/AEM.02257-10 |
[15] | Loudon AH, Woodhams DC, Parfrey LW, et al. (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8: 830–840. doi: 10.1038/ismej.2013.200 |
[16] | Apprill A, Robbins J, Eren AM, et al. (2014) Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS One 9: e90785. doi: 10.1371/journal.pone.0090785 |
[17] | Bureau of Meteorology, Australian Government. Available from: http://www.bom.gov.au. |
[18] | Qiagen, PowerBiofilm DNA Isolation Kit Sample. MO BIO Laboratories, 2017. Available from: www.mobio.com. |
[19] | Park SY, Jang SH, Oh SO, et al. (2014) An easy, rapid, and cost-effective method for DNA extraction from various lichen taxa and specimens suitable for analysis of fungal and algal strains. Mycobiology 42: 311–316. doi: 10.5941/MYCO.2014.42.4.311 |
[20] | Miller SR, Augustine S, Le Olson T, et al. (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. P Nat Acad Sci USA 102: 850–855. |
[21] | Baker JA, Entsch B, McKay DB (2003) The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc. FEMS Microbiol Lett 229: 43–47. doi: 10.1016/S0378-1097(03)00784-5 |
[22] | Hadziavdic K, Lekang K, Lanzen A, et al. (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9: e87624. doi: 10.1371/journal.pone.0087624 |
[23] | Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303 |
[24] | Christian K, Kaestli M, Gibb K (2017) Spatial patterns of hypolithic cyanobacterial diversity in Northern Australia. Ecol Evol 2017: 1–11. |
[25] | Lacap-Bugler DC, Lee KK, Archer S, et al. (2017) Global diversity of desert hypolithic cyanobacteria. Front Microbiol 8: 867. doi: 10.3389/fmicb.2017.00867 |
[26] | Smith HD, Baqué M, Duncan AG, et al. (2014) Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue. Int J Astrobiol 13: 271–277. doi: 10.1017/S1473550414000056 |
[27] | Komárek J (2007) Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Pol Polar Res 28: 211–231. |
[28] | Gokul JK, Valverde A, Tuffin M, et al. (2013) Micro-eukaryotic diversity in hypolithons from Miers Valley, Antarctica. Biology 2: 331–340. doi: 10.3390/biology2010331 |
[29] | Gadd GM (2017) New horizons in geomycology. Environ Microbiol Rep 9: 4–7. doi: 10.1111/1758-2229.12480 |
[30] | Boer W, Folman LB, Summerbell RC, et al. (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: 795–811. doi: 10.1016/j.femsre.2004.11.005 |
[31] | Belnap J (2001) Microbes and microfauna associated with biological soil crusts, In: Belnap J, Lange OJ, Editors, Biological soil crusts: structure, function, and management, Ecological studies (analysis and synthesis), Berlin: Springer, 167–174. |
[32] | Makhalanyane TP, Valverde A, Lacap DC, et al. (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5: 219–224. doi: 10.1111/1758-2229.12003 |
[33] | Lacap DC, Lau MC, Pointing SB (2011) Biogeography of prokaryotes, In: Fontaneto D, Editor, Biogeography of microscopic organisms: Is everything small everywhere? Cambridge: Cambridge University Press, 35–42. |
[34] | Carini P, Marsden PJ, Leff JW, et al. (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2: 16242. |
[35] | Demmig-Adams B, Máguas C, Adams WW, et al. (1990) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180: 400–409. doi: 10.1007/BF01160396 |
[36] | Demmig-Adams B, Adams WW, Green TGA, et al. (1990) Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia 84: 451–456. doi: 10.1007/BF00328159 |
[37] | Bahl J, Lau MC, Smith GJ, et al. (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2: 163. doi: 10.1038/ncomms1167 |
[38] | Pointing SB (2016) Hypolithic communities, In: Weber B, Büdel B, Belnap J, Editors, Biological soil crusts: An organizing principle in drylands, Switzerland: Springer International Publishing, 199–213. |
[39] | Warren-Rhodes KA, Rhodes KL, Liu S, et al. (2007) Nanoclimate environment of cyanobacterial communities in China's hot and cold hyperarid deserts. J Geophys Res-Biogeo 112: G01016. |
[40] | Ingham RE, Trofymow JA, Ingham ER, et al. (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55: 119–140. doi: 10.2307/1942528 |