Citation: Thomas Bintsis. Foodborne pathogens[J]. AIMS Microbiology, 2017, 3(3): 529-563. doi: 10.3934/microbiol.2017.3.529
[1] | Hutt PB, Hutt PB II (1984) A history of government regulation of adulteration and misbranding of food. Food Drug Cosm Law J 39: 2–73. |
[2] | CDC, What is a foodborne disease outbreak and why do they occur, 2012. Available from: http://www.cdc.gov/foodsafety/facts.html#whatisanoutbreak. |
[3] | Mead PS, Slutsker L, Dietz V, et al. (1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607–625. doi: 10.3201/eid0505.990502 |
[4] | EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2016) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 14: 4634–4865. |
[5] | FDA, Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins, Second Edition, 2012. Available from: https://www.fda.gov/Food/FoodborneIllnessContaminants/CausesOfIllnessBadBugBook/. |
[6] | IFT (2004) Bacteria associated with foodborne diseases. Institute of food technologists-Scientific Status Summary. August 2004: 1–25. |
[7] | Bacon RT, Sofos JN (2003) Characteristics of Biological Hazards in Foods, In: Schmidt RH, Rodrick GE, Editors, Food Safety Handbook, New Jersey: John Wiley & Sons, Inc., 157–195. |
[8] | Rajkowski KT, Smith JL (2001) Update: Food Poisoning and Other Diseases Induced by Bacillus cereus, In: Hui YH, Pierson MD, Gorham JR, Editors, Foodborne Disease Handbook, New York: Markel Dekker, Inc., 61–76. |
[9] | Andersson A, Rönner U, Granum PE (1995) What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int J Food Microbiol 28: 145–155. doi: 10.1016/0168-1605(95)00053-4 |
[10] | ICMSF (1996) Micro-organisms in Foods 5, Characteristics of Microbial Pathogens, New York: Kluwer Academic/Plenum Publishers. |
[11] | Arnesen LPS, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32: 579–606. doi: 10.1111/j.1574-6976.2008.00112.x |
[12] | NCBI, National Centre for Biotechnology Information, 2017. Available at: https://www.ncbi.nlm.nih.gov/genome. |
[13] | Scallan E, Hoekstra RM, Angulo FJ, et al. (2011) Foodborne illness acquired in the United States -major pathogens. Emerg Infect Dis 17: 7–15. doi: 10.3201/eid1701.P11101 |
[14] | Scallan E, Griffin PM, Angulo FJ, et al. (2011) Foodborne illness acquired in the United States-unspecified agents. Emerg Infect Dis 17: 16–22. doi: 10.3201/eid1701.P21101 |
[15] | Bennett SD, Walsh KA, Gould LH (2013) Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus-United States, 1998–2008. Clin Infect Dis 57: 425–433. doi: 10.1093/cid/cit244 |
[16] | Martinelli D, Fortunato F, Tafuri S, et al. (2013) Lessons learnt from a birthday party: a Bacillus cereus outbreak, Bari, Italy, January 2012. Ann 1st Super Sanità 49: 391–394. |
[17] | Wijnands LM, Bacillus cereus associated food borne disease: quantitative aspects of exposure assessment and hazard characterization, Dissertation, Wageningen University, 2008. Available at: http://library.wur.nl/WebQuery/wurpubs/366677. |
[18] | Naranjo M, Denayer S, Botteldoorn N, et al. (2011) Sudden death of a young adult associated with Bacillus cereus food poisoning. J Clin Microb 49: 4379–4381. doi: 10.1128/JCM.05129-11 |
[19] | Dierick K, Coillie EV, Swiecicka I, et al. (2005) Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 43: 4277–4279. doi: 10.1128/JCM.43.8.4277-4279.2005 |
[20] | Humphrey T, O'Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: A food production perspective. Int J Food Microbiol 117: 237–257. doi: 10.1016/j.ijfoodmicro.2007.01.006 |
[21] | Schaffner N, Zumstein J, Parriaux A (2004) Factors influencing the bacteriological water quality in mountainous surface and groundwaters. Acta Hydroch Hydrob 32: 225–234. doi: 10.1002/aheh.200300532 |
[22] | Sean F, Altekruse SF, Stern NJ, et al. (1999) Campylobacter jejuni-An emerging foodborne pathogen. Emerg Infect Dis 5: 28–35. doi: 10.3201/eid0501.990104 |
[23] | Stern N, Jones D, Wesley I, et al. (1994) Colonization of chicks by non-culturable Campylobacter spp. Lett Appl Microbiol 18: 333–336. doi: 10.1111/j.1472-765X.1994.tb00882.x |
[24] | Lahti E, Löfdahl M, Agren J, et al. (2017) Confirmation of a Campylobacteriosis outbreak associated with chicken liver pâtè using PFGE and WGS. Zoon Public Health 64: 14–20. doi: 10.1111/zph.12272 |
[25] | Abid MH, Wimalarathna J, Mills L, et al. (2013) Duck liver-associated outbreak of Campylobacteriosis among humans, United Kingdom, 2011. Emerg Infect Dis 19: 1310–1313. doi: 10.3201/eid1908.121535 |
[26] | Edwards DS, Milne LM, Morrow K, et al. (2013) Campylobacteriosis outbreak associated with consumption of undercooked chicken liver pâte in the East of England, September 2011: identification of a dose-response risk. Epidemiol Infect 142: 352–357. |
[27] | Farmer S, Keenan A, Vivancos R (2012) Food-borne Campylobacter outbreak in Liverpool associated with cross contamination from chicken liver parfait: Implications for investigation of similar outbreaks. Public Health 126: 657–659. doi: 10.1016/j.puhe.2012.02.004 |
[28] | Forbes KJ, Gormley FJ, Dallas JF, et al. (2009) Campylobacter immunity and coinfection following a large outbreak in a farming community. J Clin Microbiol 47: 111–116. doi: 10.1128/JCM.01731-08 |
[29] | Inns T, Foster K, Gorton R (2010) Cohort study of a Campylobacteriosis outbreak associated with chicken liver parfait, United Kingdom, June 2010. Euro Surveill 15: 19704. |
[30] | CDC (2013) Multistate outbreak of Campylobacter jejuni infections associated with undercooked chicken livers-northeastern United States, Centers for Disease Control and Prevention. MMWR 62: 874–876. |
[31] | Franco DA, Williams CE (2001) Campylobacter jejuni, In: Hui YH, Pierson MD, Gorham JR, Editors, Foodborne Disease Handbook, New York: Markel Dekker, Inc., 83–105. |
[32] | Moffatt CRM, Greig A, Valcanis M, et al. (2016) A large outbreak of Campylobacter jejuni infection in a university college caused by chicken liver pâté, Australia, 2013. Epidemiol Infect 144: 2971–2978. doi: 10.1017/S0950268816001187 |
[33] | Carter AT, Peck MW (2015) Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res Microbiol 166: 303–317. doi: 10.1016/j.resmic.2014.10.010 |
[34] | Juliao PC, Maslanka S, Dykes J, et al. (2013) National outbreak of type A foodborne botulism associated with a widely distributed commercially canned hot dog chili sauce. Clin Infect Dis 56: 376–382. doi: 10.1093/cid/cis901 |
[35] | Marshall KM, Nowaczyk L, Raphael BH, et al. (2014) Identification and genetic characterization of Clostridium botulinum serotype A strains from commercially pasteurized carrot juice. Food Microbiol 44: 149–155. doi: 10.1016/j.fm.2014.05.009 |
[36] | King LA (2008) Two severe cases of bolulism associated with industrially produced chicken enchiladas, France, August 2008. Euro Surveillance 13: 2418–2424. Available from: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=18978. |
[37] | Grass JE, Gould LH, Mahon BE (2013) Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog Dis 10: 131–136. doi: 10.1089/fpd.2012.1316 |
[38] | Acheson P, Bell V, Gibson J, et al. (2016) Enforcement of science-using a Clostridium perfringens outbreak investigation to take legal action. J Public Health 38: 511–515. doi: 10.1093/pubmed/fdv060 |
[39] | Jaradat ZW, Mousa WA, Elbetieha A, et al. (2014) Cronobacter spp.-opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits. J Med Microbiol 63: 1023–1037. |
[40] | Healy B, Cooney S, O'Brien S, et al. (2010) Cronobacter (Enterobacter sakazakii): An opportunistic foodborne pathogen. Foodborne Path Dis 7: 339–350. doi: 10.1089/fpd.2009.0379 |
[41] | Kandhai MC, Reij MW, van Puyvelde K, et al. (2004) A new protocol for the detection of Enterobacter sakazakii applied to environmental samples. J Food Protect 67: 1267–1270. doi: 10.4315/0362-028X-67.6.1267 |
[42] | Hochel I, Rüzicková H, Krásny L, et al. (2012) Occurence of Cronobacter spp. in retail foods. J Appl Microbiol 112: 1257–1265. doi: 10.1111/j.1365-2672.2012.05292.x |
[43] | Mitscherlich E, Marth EH (1984) Microbial Survival in the Environment: Bacteria and Rickettsiae Important in Human and Animal Health, Berlin: Springer-Verlag. |
[44] | Garcia A, Fox JG, Besser TE (2010) Zoonotic enterohemorrhagic Eschericia coli: A one health perspective. ILAR J 51: 221–232. doi: 10.1093/ilar.51.3.221 |
[45] | Croxen MA, Law RJ, Scholz R, et al. (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26: 822–880. doi: 10.1128/CMR.00022-13 |
[46] | Wells JG, Davis BR, Wachsmuth IK, et al. (1983) Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18: 512–520. |
[47] | Armstrong GL, Hollingsworth J, Morris JG (1996) Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world Epidemiol Rev 18: 29–51. |
[48] | Rasko DA, Webster DR, Sahl JW, et al. (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. New Engl J Med 365: 709–717. |
[49] | Blaser MJ (2011) Deconstructing a lethal foodborne epidemic. New Engl J Med 365: 1835–1836. doi: 10.1056/NEJMe1110896 |
[50] | Frank C, Faber MS, Askar M, et al. (2011) Large and ongoing outbreak of haemolytic uraemic syndrome, Germany, May 2011. Euro Surveill 16: S1–S3. |
[51] | CDC (Centers for Disease Control and Prevention) (1993) Update: Multistate outbreak of Escherichia coli O157:H7 infections from hamburgers-western United States, 1992–1993. MMWR 42: 258–263. |
[52] | FSIS (Food Safety and Inspection Service), Guidance for minimizing the risk of Escherichia coli O157:H7 and Salmonella in beef slaughter operations, 2002. Available from: http://www.haccpalliance.org/sub/food-safety/BeefSlauterGuide.pdf. |
[53] | CDC (2006) Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach-United States, September 2006. MMWR 55: 1045–1046. |
[54] | Weise E, Schmit J (2007) Spinach recall: 5 faces. 5 agonizing deaths. 1 year later. USA Today: 24. |
[55] | Jay MT, Colley M, Carychao D, et al. (2007) Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis 13: 1908–1911. doi: 10.3201/eid1312.070763 |
[56] | Berger CN, Sodha SV, Shaw RK, et al. (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12: 2385–2397. doi: 10.1111/j.1462-2920.2010.02297.x |
[57] | Frank C, Werber D, Cramer JP, et al. (2011b) Epidemic profile of shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. New Engl J Med 365: 1771–1780. |
[58] | Kupferschmidt K (2011) As E. coli outbreak recedes, new questions come to the fore. Science 33: 27. |
[59] | EFSA (2011) Technical report: Tracing seeds, in particular fenugreek (Trigonella foenum-graecum) seeds, in relation to the shiga toxin-producing E. coli (STEC) O104:H4 2011 outbreaks in Germany and France. EFSA Supporting Publications 8: 176. |
[60] | EFSA (2011) Scientific report of the EFSA: Shiga toxin-producing E. coli (STEC) O104:H4 2011 outbreaks in Europe: Taking stock. EFSA J 9: 2390–2412. |
[61] | CDC (2016) Multistate outbreak of Shiga toxin-producing Escherichia coli infections linked to flour. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/ecoli/2016/o121-06-16/index.html. |
[62] | Zhang G, Ma L, Patel N, et al. (2007) Isolation of Salmonella typhimurium from outbreak-associated cake mix. J Food Protect 70: 997–1001. doi: 10.4315/0362-028X-70.4.997 |
[63] | Buchanan RL, Goris LGM, Hayman MM, et al. (2017) A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75: 1–13. doi: 10.1016/j.foodcont.2016.12.016 |
[64] | Jemmi T, Stephen R (2006) Listeria monocytogenes: food-borne pathogen and hygiene indicator. Rev Sci Tech 25: 571–580. doi: 10.20506/rst.25.2.1681 |
[65] | Ghandhi M, Chikindas ML (2007) Listeria: A foodborne pathogen that knows how to survive. Int J Food Microbiol 113: 1–15. doi: 10.1016/j.ijfoodmicro.2006.07.008 |
[66] | Ferreira V, Wiedmann M, Teixaira P, et al. (2014) Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J Food Protect 77: 150–170. doi: 10.4315/0362-028X.JFP-13-150 |
[67] | Angelo KM, Conrad AR, Saupe A, et al. (2017) Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014–2015. Epidemiol Infect: 145: 848–856. doi: 10.1017/S0950268816003083 |
[68] | Raheem D (2016) Outbreaks of listeriosis associated with deli meats and cheese: an overview. AIMS Microbiol 2: 230–250. doi: 10.3934/microbiol.2016.3.230 |
[69] | FDA, Environmental Assessment: Factors Potentially Contributing to the Contamination of Fresh Whole Cantaloupe Implicated in a Multi-State Outbreak of Listeriosis, 2011. Available from: https://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm276247.htm. |
[70] | CDC, Multistate Outbreak of Salmonella Bareilly and Salmonella Nchanga Infections Associated with a Raw Scraped Ground Tuna Product (Final Update), 2012. Available from: https://www.cdc.gov/salmonella/bareilly-04-12/. |
[71] | Hennessy TW, Hedberg CW, Slutsker L, et al. (1996) A national outbreak of Salmonella enteritidis infections from ice cream. New Engl J Med 334: 1281–1286. doi: 10.1056/NEJM199605163342001 |
[72] | Cavallaro E, Date K, Medus C, et al. (2011) Salmonella Typhimurium infections associated with peanut products. New Engl J Med 365: 601–610. doi: 10.1056/NEJMoa1011208 |
[73] | Maki DG (2009) Coming to grips with foodborne infection-peanut butter, peppers, and nationwide Salmonella outbreaks. New Engl J Med 360: 949–953. doi: 10.1056/NEJMp0806575 |
[74] | Penteado AL, Eblen BS, Miller AJ (2004) Evidence of salmonella internalization into fresh mangos during simulated postharvest insect disinfestation procedures. J Food Protect 67: 181–184. doi: 10.4315/0362-028X-67.1.181 |
[75] | Sivapalasingam SE, Barrett A, Kimura S, et al. (2003) A multistate outbreak of Salmonella enterica serotype newport infection linked to mango consumption: Impact of water-dip disinfestation technology. Clin Infect Dis 37: 1585–1590. doi: 10.1086/379710 |
[76] | Laufer AS, Grass J, Holt K, et al. (2015) Outbreaks of Salmonella infections attributed to beef-United States, 1973–2011. Epidemiol Infect 143: 2003–2013. doi: 10.1017/S0950268814003112 |
[77] | Fonteneau L, Da Silva NJ, Fabre L (2017) Multinational outbreak of travel-related Salmonella Chester infections in Europe, summers 2014 and 2015. Eurosurveill 22: 1–11. |
[78] | O'Grady KA, Krause V (1999) An outbreak of salmonellosis linked to a marine turtle. Headache 30: 324–327. |
[79] | Group OFW (2006) OzFoodNet: enhancing foodborne disease surveillance across Australia: quarterly report, 1 October to 31 December 2005.Commun Dis Intell Q Rep 30: 148–153. |
[80] | CDC (2013) Multistate outbreak of Salmonella chester infections associated with frozen meals -18 states. MMWR 62: 979–982. |
[81] | Taylor J, Galanis E, Wilcott L, et al. (2012) Salmonella chester outbreak investigation team. An outbreak of salmonella chester infection in Canada: rare serotype, uncommon exposure, and unusual population demographic facilitate rapid identification of food vehicle. J Food Protect 75: 738–742. |
[82] | Vargas M, Gascon J, De Anta MTJ, et al (1999) Prevalence of Shigella enterotoxins 1 and 2 among Shigella strains isolated from patients with traveler's diarrhea. J Clin Microbiol 37: 3608–3611. |
[83] | Hedberg CW, Levine WC, White KE, et al. (1992) An international foodborne outbreak of Shigellosis associated with a commercial airline. JAMA 268: 3208–3212. doi: 10.1001/jama.1992.03490220052027 |
[84] | CDC (1999) Outbreaks of Shigella sonnei Infection Associated with Eating Fresh Parsley-United States and Canada, July-August 1998. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/00056895.htm. |
[85] | Mossel DAA, Corry JE, Struijk CB, et al. (1995) Essentials of the microbiology of foods. A textbook for advanced studies, Chichester: John Wiley and Sons, 146–150. |
[86] | Kaper JB, Morris JG, Levine MM (1995) Cholera. Clin Microbiol Rev 8: 48–86. |
[87] | Janda JM, Brenden R, De Benedetti JA, et al. (1988) Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev 1: 245–267. doi: 10.1128/CMR.1.3.245 |
[88] | Wu Y, Wen J, Ma Y, et al. (2014) Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus, China, 2003–2008. Food Control 46: 197–202. doi: 10.1016/j.foodcont.2014.05.023 |
[89] | Ma C, Deng X, Ke C, et al. (2013) Epidemiology and etiology characteristics of foodborne outbreaks caused by Vibrio parahaemolyticus during 2008–2010 in Guangdong Province, China. Foodborne Pathog Dis 11: 21–29. |
[90] | Chen J, Zhang R, Qi X, et al. (2017) Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus during 2010–2014 in Zhejuang Province, China. Food Control 77: 110–115. doi: 10.1016/j.foodcont.2017.02.004 |
[91] | Cary JW, Linz JE, Bhatnagar D (2000) Microbial Foodborne Diseases: Mechanisms of Pathogenesis and Toxin Synthesis, Lancaster: Technomic Publishing Co, Inc. |
[92] | Longenberger AH, Gronostaj MP, Yee GY, et al. (2014) Yersinia enterocolitica infections associated with improperly pasteurized milk products: southwest Pennsylvania, March–August, 2011. Epidemiol Infect 142: 1640–1650. doi: 10.1017/S0950268813002616 |
[93] | Konishi N, Ishitsuka R, Yokoyama K, et al. (2016) Two outbreaks of Yersinia enterocolitica O:8 infections in Tokyo and the characterization of isolates. J Japan Assoc Infect Dis 90: 66–72. |
[94] | Grohman GS, Murphy AM, Christopher PJ, et al. (1981) Norwalk virus gastroenteritis in volunteers consuming depurated oysters. Aust J Exp Biol Med Sci 59: 219–228. doi: 10.1038/icb.1981.17 |
[95] | Power UF, Collins JK (1989) Differential depuration of polivirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis. Appl Environ Microbiol 55: 1386–1390. |
[96] | Digirolamo R, Liston J, Matches JR (1970) Survival of virus in chilled, frozen, and processed oysters. Appl Environ Microbiol 20: 58–63. |
[97] | Cuthbert JA (2001) Hepatitis A: Old and new. Clin Microbiol Rev 14: 38–58. doi: 10.1128/CMR.14.1.38-58.2001 |
[98] | Halliday ML, Lai LY, Zhou TK, et al. (1991) An epidemic of Hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J Infect Dis 164: 852–859. doi: 10.1093/infdis/164.5.852 |
[99] | Koff RS, Grady GF, Chalmers TC, et al. (1967) Viral Hepatitis in a group of Boston hospitals-Importance of exposure to shellfish in a nonepidemic period. New Engl J Med 276: 703–710. doi: 10.1056/NEJM196703302761301 |
[100] | Wait DA, Sobsey MD (1983) Method for recovery of enteric viruses from estuarine sediments with chaotropic agents. Appl Environ Microbiol 46: 379–385. |
[101] | CDC (2003) Hepatitis A outbreak associated with green onions at a restaurant-Monaca, Pennsylvania, 2003. MMWR 52: 1155–1157. |
[102] | Chiapponi C, Pavoni E, Bertasi B, et al. (2014) Isolation and genomic sequence of hepatitis A virus from mixed frozen berries in Italy. Food Environ Virol 6: 202–206. doi: 10.1007/s12560-014-9149-1 |
[103] | Montano-Remacha C, Ricotta L, Alfonsi V, et al. (2014) Hepatitis A outbreak in Italy, 2013: a matched case-control study. Euro Surveill 19: 20906. doi: 10.2807/1560-7917.ES2014.19.37.20906 |
[104] | Blackwell JH, Cliver DO, Callis JJ, et al. (1985) Foodborne viruses: Their importance and need for research. J Food Protect 48: 717–723. doi: 10.4315/0362-028X-48.8.717 |
[105] | WHO (2015) WHO estimates of the global burden of foodborne diseases. Geneva. |
[106] | Iturriza-Gomara M, O'Brien SJ (2016) Foodborne viral infections. Curr Opin Infect Dis 29: 495–501. doi: 10.1097/QCO.0000000000000299 |
[107] | Estes MK, Prasad BV, Atmar RL (2006) Noroviruses everywhere: Has something changed? Curr Opin Infect Dis 19: 467–474. |
[108] | Glass RI, Parashar UD, Estes MK (2009) Norovirus gastroenteritis. New Engl J Med 361: 1776–1785. doi: 10.1056/NEJMra0804575 |
[109] | Verhoef L, Kouyos RD, Vennema H, et al. (2011) An integrated approach to identifying international foodborne norovirus outbreaks. Emerg Infect Dis 17: 412–418. doi: 10.3201/eid1703.100979 |
[110] | Koopmans M (2008) Progress in understanding norovirus epidemiology. Curr Opin Infect Dis 21: 544–552. |
[111] | McCarter YS (2009) Infectious disease outbreaks on cruise ships. Clin Microbiol Newsl 31: 161–168. doi: 10.1016/j.clinmicnews.2009.10.001 |
[112] | Desai R, Yen C, Wikswo M, et al. (2011) Transmission of norovirus among NBA players and staff, Winter 2010–2011. Clin Infect Dis 53: 1115–1117. doi: 10.1093/cid/cir682 |
[113] | Iritani N, Kaida A, Abe N, et al. (2014) Detection and genetic characterization of human enteric viruses in oyster-associated gastroenteritis outbreaks between 2001 and 2012 in Osaka City, Japan. J Med Virol 86: 2019–2025. doi: 10.1002/jmv.23883 |
[114] | Müller L, Schultz AC, Fonager J, et al. (2015) Separate norovirus outbreaks linked to one source of imported frozen raspberries by molecular analysis, Denmark, 2010–2011. Epidemiol Infect 143: 2299–2307. doi: 10.1017/S0950268814003409 |
[115] | Tuladhar E, Hazeleger WC, Koopmans M, et al. (2015) Reducing viral contamination from finger pads: handwashing is more effective than alcohol-based hand disinfectants. J Hosp Infect 90: 226–234. doi: 10.1016/j.jhin.2015.02.019 |
[116] | Ionidis G, Hubscher J, Jack T, et al. (2016) Development and virucidal activity of a novel alcohol-based hand disinfectant supplemented with urea and citric acid. BMC Infect Dis 16: 77. doi: 10.1186/s12879-016-1410-9 |
[117] | Iturriza-Gomara M, O'Brien SJ (2016) Foodborne viral infections. Curr Opin Infect Dis 29: 495–501. doi: 10.1097/QCO.0000000000000299 |
[118] | Murray CJL, Vos T, Lozano R, et al. (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380: 2197–2223. doi: 10.1016/S0140-6736(12)61689-4 |
[119] | Tauxe RV (2002) Emerging foodborne pathogens. Int J Food Microbiol 78: 31–41. doi: 10.1016/S0168-1605(02)00232-5 |
[120] | CDC , Global diahrrea burden, 2015. Available from: http://www.cdc.gov/healthywater/global/diarrhea-burden.html/. |
[121] | JenniferY, Huang MPH, Olga L, et al. (2016) Infection with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance-Foodborne diseases active surveillance network, 10 U.S. Sites, 2012–2015. MMWR 65: 368–371. |
[122] | Scharff RL (2012) Economic burden from health losses due to foodborne illness in the United States. J Food Protect 75: 123–131. doi: 10.4315/0362-028X.JFP-11-058 |
[123] | Flynn D, Germany's E. coli outbreak most costly in history, Food safety news, 2011. Available from: http://www.foodsafetynews.com/2011/06/europes-o104-outbreak-most-costly-in-history/. |
[124] | Hussain MA, Dawson CO (2013) Economic impact of food safety outbreaks on food businesses. Foods 2: 585–589. doi: 10.3390/foods2040585 |
[125] | Bergholz TM, Switt AIM, Wiedmann M (2014) Omics approaches in food safety: fulfilling the promise? Trends Microbiol 22: 275–281. doi: 10.1016/j.tim.2014.01.006 |
[126] | Sauders BD, Mangione K, Vincent C, et al. (2004) Distribution of Listeria monocytogenes molecular subtypes among human and food isolates from New York State shows persistence of human disease-associated Listeria monocytogenes strains in retail environments. J Food Protect 67: 1417–1428. doi: 10.4315/0362-028X-67.7.1417 |
[127] | Velge P, Cloeckaert A, Barrow P (2005) Emergence of Salmonella epidemics: the problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res 36: 267–288. doi: 10.1051/vetres:2005005 |
[128] | Lianou A, Koutsoumanis KP (2013) Strain variability of the behavior of foodborne bacterial pathogens: A review. Int J Food Microbiol 167: 310–321. doi: 10.1016/j.ijfoodmicro.2013.09.016 |
[129] | Velge P, Roche SM (2010) Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 5: 1799–1821. doi: 10.2217/fmb.10.134 |
[130] | Yeni F, Yavas S, Alpas H, et al. (2016) Most common foodborne pathogens and mycotoxins on fresh produce: A review of recent outbreaks. Crit Rev Food Sci 56: 1532–1544. doi: 10.1080/10408398.2013.777021 |
[131] | Barlow SM, Boobis AR, Bridges J, et al. (2015) The role of hazard- and risk-based approaches in ensuring food safety. Trends Food Sci Technol 46: 176–188. doi: 10.1016/j.tifs.2015.10.007 |
[132] | Koutsoumanis KP, Aspridou Z (2015) Moving towards a risk-based food safety management. Curr Opin Food Sci 12: 36–41. |
[133] | CAC (1999) CAC/GL-30: Principles and Guidelines for the Conduct of Microbiological Risk Assessment. Codex Alimentarius Commission. |
[134] | Van de Venter T (2000) Emerging food-borne diseases: a global responsibility. Food Nutr Agr 26: 4–13. |