Citation: Jordyn Bergsveinson, Emily Ewen, Vanessa Friesen, Barry Ziola. Transcriptional activity and role of plasmids of Lactobacillus brevis BSO 464 and Pediococcus claussenii ATCC BAA-344T during growth in the presence of hops[J]. AIMS Microbiology, 2016, 2(4): 460-478. doi: 10.3934/microbiol.2016.4.460
[1] | Suzuki K (2011) 125th Anniversary review: Microbiological instability of beer caused by spoilage bacteria. J Inst Brewing 117: 131–155. doi: 10.1002/j.2050-0416.2011.tb00454.x |
[2] | Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89: 105–124. doi: 10.1016/S0168-1605(03)00153-3 |
[3] | Simpson WJ (1993) Ionophoric action of trans-isohumulone on Lactobacillus brevis. J Gen Microbiol 139: 1041–1045. doi: 10.1099/00221287-139-5-1041 |
[4] | Behr J, Vogel RF (2009) Mechanisms of hop inhibition: hop ionophores. J Agric Food Chem 57: 6074–60781. doi: 10.1021/jf900847y |
[5] | Behr J, Vogel RF (2010) Mechanisms of hop inhibition include the transmembrane redox reaction. Appl Environ Microbiol 76: 142–149. doi: 10.1128/AEM.01693-09 |
[6] | Hayashi N, Ito M, Horiike S, et al. (2001) Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer. Appl Microbiol Biotechnol 55: 596–603. doi: 10.1007/s002530100600 |
[7] | Sami M, Yamashita H, Hirono T, et al. (1997) Hop-resistant Lactobacillus brevis contains a novel plasmid harboring a multidrug resistance-like gene. J Ferment Bioeng 84: 1–6. |
[8] | Suzuki K, Iijima K, Ozaki K, et al. (2005) Isolation of a hop-sensitive variant of Lactobacillus lindneri and identification of genetic markers for beer spoilage ability of lactic acid bacteria. Appl Environ Microbiol 71: 5089–5097. |
[9] | Behr J, Gänzle MG, Vogel RF (2006) Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol 72: 6483–6492. doi: 10.1128/AEM.00668-06 |
[10] | Bergsveinson J, Goerzen S, Redekop A, et al. (2016) Genetic variability in the hop-tolerance horC gene of beer-spoiling lactic acid bacteria. J Am Soc Brew Chem 74: 173–182. |
[11] | Bergsveinson J, Redekop A, Zoerb S, et al. (2015) Dissolved carbon dioxide selects for lactic acid bacteria able to grow in and spoil packaged beer. J Am Soc Brew Chem 73: 331–338. |
[12] | Menz G, Andrighetto C, Lombardi A, et al. (2010) Isolation, identification, and characterisation of beer-spoilage lactic acid bacteria from microbrewed beer from Victoria, Australia. J Inst Brewing 116: 14–22. doi: 10.1002/j.2050-0416.2010.tb00393.x |
[13] | Mozzi F, Ortiz ME, Bleckwedel J, et al. (2013) Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Res Int 54: 1152–1161. doi: 10.1016/j.foodres.2012.11.010 |
[14] | Bergsveinson J, Friesen V, Ziola B (2016) Transcriptome analysis of beer-spoiling Lactobacillus brevis BSO 464 in degassed and gassed beer. Int J Food Micro 235: 28–35. doi: 10.1016/j.ijfoodmicro.2016.06.041 |
[15] | Pittet V, Phister TG, Ziola B (2013) Transcriptome sequence and plasmid copy number analysis of the brewery isolate Pediococcus claussenii ATCC BAA-344T during growth in beer. PLoS One 8: e73627. doi: 10.1371/journal.pone.0073627 |
[16] | Simpson WJ, Fernandez JL (1992) Selection of beer-spoilage lactic acid bacteria and induction of their ability to grow in beer. Lett Appl Microbiol 14: 13–16. doi: 10.1111/j.1472-765X.1992.tb00636.x |
[17] | Bergsveinson J, Friesen V, Ewen E, et al. (2015) Genome sequence of rapid beer-spoiling isolate Lactobacillus brevis BSO 464. Genom Announc 3: e01411–e01415. |
[18] | Dobson CM, Deneer H, Lee S, et al. (2002) Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol 52: 2003–2010. |
[19] | Pittet V, Abegunde T, Marfleet T, et al. (2012) Complete genome sequence of the beer spoilage organism Pediococcus claussenii ATCC BAA-344T. J Bacteriol 194: 1271–1272. doi: 10.1128/JB.06759-11 |
[20] | Bergsveinson J, Baecker N, Pittet V, et al. (2015) Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage. Appl Environ Microbiol 81: 1234–1241. doi: 10.1128/AEM.02870-14 |
[21] | Bergsveinson J, Pittet V, Ziola B (2012) RT-qPCR analysis of putative beer-spoilage gene expression during growth of Lactobacillus brevis BSO 464 and Pediococcus claussenii ATCC BAA-344T in beer. Appl Microbiol Biotechnol 96: 461–470. doi: 10.1007/s00253-012-4334-3 |
[22] | RStudio Team, RStudio: Integrated Development for R. RStudio, Inc., Boston, 2015. Available from: http://www.rstudio.com/. |
[23] | Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom Biol 15: 1. doi: 10.1186/gb-2014-15-1-r1 |
[24] | Feehily C, Karatzas KA (2013) Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol 114: 11–24. doi: 10.1111/j.1365-2672.2012.05434.x |
[25] | Xie L, Zeng J, Luo H, et al. (2014) The roles of bacterial GCN5- related N- acetyltransferases. Crit Rev Eukaryot Gene Expr 24: 77–87. doi: 10.1615/CritRevEukaryotGeneExpr.2014007988 |
[26] | Nikolskaya AN, Galperin MY (2002) A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res 30: 2453–2459. |
[27] | Brown NL, Stoyanov JV, Kidd SP, et al. (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27: 145–163. doi: 10.1016/S0168-6445(03)00051-2 |
[28] | Omastis U, Ahrens CH, Muller S, et al. (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30: 884–886. |
[29] | Sakamoto K, Margolles A, Van Veen HW, et al. (2001) Hop resistance in beers spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183: 5371–5375. doi: 10.1128/JB.183.18.5371-5375.2001 |
[30] | Mempin R, Tran H, Chen C, et al. (2013) Release of extracellular ATP by bacteria during growth. BMC Microbiol 13: 1. doi: 10.1186/1471-2180-13-1 |
[31] | Chivasa S, Murphy AM, Hamilton JM, et al. (2009) Extracellular ATP is a regulator of pathogen defence in plants. Plant J 60: 436–448. doi: 10.1111/j.1365-313X.2009.03968.x |
[32] | Tanaka K, Gilroy S, Jones AM, et al. (2016) Extracellular ATP signaling in plants. Trends Cell Biol 20: 601–608. |
[33] | Altschul SF, Gish W, Miller W, et al. (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi: 10.1016/S0022-2836(05)80360-2 |
[34] | Singh VK, Moskovitz J (2003) Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiol 149: 2739–2747. |
[35] | Iijima K, Suzuki K, Ozaki K, et al. (2006) horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC45cc. J Appl Microbiol 100: 1282–1288. doi: 10.1111/j.1365-2672.2006.02869.x |
[36] | Haakensen M, Schubert A, Ziola B (2009) Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates. Int J Food Microbiol 130: 56–60. |
[37] | Pittet V (2012) Adaptation of lactic acid bacteria for growth in beer. University of Saskatchewan. PhD Thesis. |