Research article Topical Sections

Effect of heterologous protein expression on Escherichia coli biofilm formation and biocide susceptibility

  • Received: 09 September 2016 Accepted: 10 November 2016 Published: 17 November 2016
  • Escherichia coli is recognized as an excellent model for biofilm studies and one of the favourite hosts for recombinant protein expression. This work assesses the influence of heterologous protein production on biofilm formation and susceptibility to chemical treatment. Biofilm formation by two E. coli strains was compared using a flow cell system. One strain contained the commercial pET28A plasmid and the other a plasmid derivative with the same backbone but containing the enhanced green fluorescent protein (eGFP) gene. The susceptibility of biofilms to the biocide benzyldimethyldodecylammonium chloride (BDMDAC) was also assessed. It was found that the eGFP-expressing strain formed thicker biofilms with a higher cell density than the non-producing strain. Biofilms of both strains were neither completely inactivated nor removed by biocide treatment. Similar inactivation efficiencies were obtained, although biofilm cohesion was higher for the non-producing strain.

    Citation: Luciana C. Gomes, Filipe J. Mergulhão. Effect of heterologous protein expression on Escherichia coli biofilm formation and biocide susceptibility[J]. AIMS Microbiology, 2016, 2(4): 434-446. doi: 10.3934/microbiol.2016.4.434

    Related Papers:

  • Escherichia coli is recognized as an excellent model for biofilm studies and one of the favourite hosts for recombinant protein expression. This work assesses the influence of heterologous protein production on biofilm formation and susceptibility to chemical treatment. Biofilm formation by two E. coli strains was compared using a flow cell system. One strain contained the commercial pET28A plasmid and the other a plasmid derivative with the same backbone but containing the enhanced green fluorescent protein (eGFP) gene. The susceptibility of biofilms to the biocide benzyldimethyldodecylammonium chloride (BDMDAC) was also assessed. It was found that the eGFP-expressing strain formed thicker biofilms with a higher cell density than the non-producing strain. Biofilms of both strains were neither completely inactivated nor removed by biocide treatment. Similar inactivation efficiencies were obtained, although biofilm cohesion was higher for the non-producing strain.


    加载中
    [1] Mergulhão FJM, Monteiro GA, Cabral JMS, et al. (2004) Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J Microbiol Biotechnol 14: 1–14.
    [2] Sanchez-Garcia L, Martín L, Mangues R, et al. (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact 15: 1–7. doi: 10.1186/s12934-015-0402-6
    [3] Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19: 590–601. doi: 10.1016/j.drudis.2013.11.008
    [4] Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10: 411–421. doi: 10.1016/S0958-1669(99)00003-8
    [5] Pines O, Inouye M (1999) Expression and secretion of proteins in E. coli. Mol Biotechnol 12: 25–34. doi: 10.1385/MB:12:1:25
    [6] Ong CL, Beatson SA, McEwan AG, et al. (2009) Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl Environ Microbiol 75: 6783–6791. doi: 10.1128/AEM.00974-09
    [7] Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412: 442–445. doi: 10.1038/35086581
    [8] Reisner A, Höller BM, Molin S, et al. (2006) Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J Bacteriol 188: 3582–3588. doi: 10.1128/JB.188.10.3582-3588.2006
    [9] Reisner A, Haagensen JA, Schembri MA, et al. (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48: 933–946. doi: 10.1046/j.1365-2958.2003.03490.x
    [10] May T, Okabe S (2008) Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli. J Bacteriol 190: 7479–7490. doi: 10.1128/JB.00823-08
    [11] Yang X, Ma Q, Wood TK (2008) The R1 conjugative plasmid increases Escherichia coli biofilm formation through an envelope stress response. Appl Environ Microbiol 74: 2690–2699. doi: 10.1128/AEM.02809-07
    [12] Król JE, Nguyen HD, Rogers LM, et al. (2011) Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 77: 5079–5088. doi: 10.1128/AEM.00090-11
    [13] Norman A, Hansen LH, She Q, et al. (2008) Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 60: 59–74. doi: 10.1016/j.plasmid.2008.03.003
    [14] Burmølle M, Bahl MI, Jensen LB, et al. (2008) Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 154: 187–195. doi: 10.1099/mic.0.2007/010454-0
    [15] May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 53: 4628–4639. doi: 10.1128/AAC.00454-09
    [16] Castonguay MH, van der Schaaf S, Koester W, et al. (2006) Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res Microbiol 157: 471–478. doi: 10.1016/j.resmic.2005.10.003
    [17] Gallant CV, Daniels C, Leung JM, et al. (2005) Common β-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58: 1012–1024. doi: 10.1111/j.1365-2958.2005.04892.x
    [18] Lim JY, Yoon J, Hovde CJ (2010) A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20: 5–14.
    [19] Burland V, Shao Y, Perna NT, et al. (1998) The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26: 4196–4204. doi: 10.1093/nar/26.18.4196
    [20] Lim JY, La HJ, Sheng H, et al. (2010) Influence of plasmid pO157 on Escherichia coli O157:H7 Sakai biofilm formation. Appl Environ Microbiol 76: 963–966. doi: 10.1128/AEM.01068-09
    [21] Huang CT, Peretti SW, Bryers JD (1993) Plasmid retention and gene expression in suspended and biofilm cultures of recombinant Escherichia coli DH5α (pMJR1750). Biotechnol Bioeng 41: 211–220. doi: 10.1002/bit.260410207
    [22] Huang CT, Peretti SW, Bryers JD (1994) Effects of inducer levels on a recombinant bacterial biofilm formation and gene expression. Biotechnol Lett 16: 903–908. doi: 10.1007/BF00128622
    [23] Bryers JD, Huang CT (1995) Recombinant plasmid retention and expression in bacterial biofilm cultures. Wat Sci Tech 31: 105–115.
    [24] O’Connell HA, Niu C, Gilbert ES (2007) Enhanced high copy number plasmid maintenance and heterologous protein production in an Escherichia coli biofilm. Biotechnol Bioeng 97: 439–446. doi: 10.1002/bit.21240
    [25] Teodósio JS, Simões M, Mergulhão FJ (2012) The influence of nonconjugative Escherichia coli plasmids on biofilm formation and resistance. J Appl Microbiol 113: 373–382. doi: 10.1111/j.1365-2672.2012.05332.x
    [26] Mergulhão FJ, Taipa MA, Cabral JM, et al. (2004) Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J Biotechnol 109: 31–43. doi: 10.1016/j.jbiotec.2003.10.024
    [27] Gomes LC, Carvalho D, Briandet R, et al. (2016) Temporal variation of recombinant protein expression in Escherichia coli biofilms analysed at single-cell level. Process Biochem 51: 1155–1161. doi: 10.1016/j.procbio.2016.05.016
    [28] Ferreira C, Pereira AM, Pereira MC, et al. (2011) Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens. J Antimicrob Chemother 66: 1036–1043. doi: 10.1093/jac/dkr028
    [29] Ferreira C, Pereira AM, Melo LF, et al. (2010) Advances in industrial biofilm control with micro-nanotechnology, In: Méndez-Vilas A, editor. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz: Formatex, 845–854.
    [30] Yanischperron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119. doi: 10.1016/0378-1119(85)90120-9
    [31] Sambrook J, Russell DW (2001) Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
    [32] Teodósio JS, Simões M, Melo LF, et al. (2011) Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 27: 1–11.
    [33] Gomes LC, Silva LN, Simões M, et al. (2015) Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. J Biomed Mater Res A 103: 1414–1423. doi: 10.1002/jbm.a.35277
    [34] Mergulhão FJ, Monteiro GA (2007) Analysis of factors affecting the periplasmic production of recombinant proteins in Escherichia coli. J Microbiol Biotechnol 17: 1236–1241.
    [35] Bentley WE, Mirjalili N, Andersen DC, et al. (1990) Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35: 668–681. doi: 10.1002/bit.260350704
    [36] Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115: 113–128. doi: 10.1016/j.jbiotec.2004.08.004
    [37] Cunningham DS, Koepsel RR, Ataai MM, et al. (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 8: 1475–2859.
    [38] Hoffmann F, Weber J, Rinas U (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol Bioeng 80: 313–319.
    [39] Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli, In: Enfors S-O, editor. Physiological Stress Responses in Bioprocesses, Berlin: Springer-Verlag Berlin Heidelberg, 73–92.
    [40] Landini P (2009) Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 160: 259–266. doi: 10.1016/j.resmic.2009.03.001
    [41] Kurland CG, Dong H (1996) Bacterial growth inhibition by overproduction of protein. Mol Microbiol 21: 1–4. doi: 10.1046/j.1365-2958.1996.5901313.x
    [42] Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13: 247–261. doi: 10.1016/0734-9750(95)00004-A
    [43] Xia XX, Qian ZG, Ki CS, et al. (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107: 14059–14063. doi: 10.1073/pnas.1003366107
    [44] Yang YX, Qian ZG, Zhong JJ, et al. (2016) Hyper-production of large proteins of spider dragline silk MaSp2 by Escherichia coli via synthetic biology approach. Process Biochem 51: 484–490. doi: 10.1016/j.procbio.2016.01.006
    [45] Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177: 1497–1504. doi: 10.1128/jb.177.6.1497-1504.1995
    [46] Georgiou G, Shuler ML, Wilson DB (1988) Release of periplasmic enzymes and other physiological effects of β-lactamase overproduction in Escherichia coli. Biotechnol Bioeng 32: 741–748. doi: 10.1002/bit.260320603
    [47] Williams I, Venables WA, Lloyd D, et al. (1997) The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 143: 2407–2413. doi: 10.1099/00221287-143-7-2407
    [48] Simões M, Pereira MO, Vieira MJ (2005) Effect of mechanical stress on biofilms challenged by different chemicals. Water Res 39: 5142–5152. doi: 10.1016/j.watres.2005.09.028
    [49] Araújo PA, Mergulhão FJM, Melo LF, et al. (2014) The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling 30: 675–683. doi: 10.1080/08927014.2014.904294
    [50] Cloete TE, Jacobs L, Brözel VS (1998) The chemical control of biofouling in industrial water systems. Biodegradation 9: 23–37. doi: 10.1023/A:1008216209206
    [51] Ahimou F, Semmens MJ, Haugstad G, et al. (2007) Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Appl Environ Microbiol 73: 2905–2910. doi: 10.1128/AEM.02420-06
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5708) PDF downloads(1078) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog