Citation: Luciana C. Gomes, Filipe J. Mergulhão. Effect of heterologous protein expression on Escherichia coli biofilm formation and biocide susceptibility[J]. AIMS Microbiology, 2016, 2(4): 434-446. doi: 10.3934/microbiol.2016.4.434
[1] | Mergulhão FJM, Monteiro GA, Cabral JMS, et al. (2004) Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J Microbiol Biotechnol 14: 1–14. |
[2] | Sanchez-Garcia L, Martín L, Mangues R, et al. (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact 15: 1–7. doi: 10.1186/s12934-015-0402-6 |
[3] | Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19: 590–601. doi: 10.1016/j.drudis.2013.11.008 |
[4] | Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10: 411–421. doi: 10.1016/S0958-1669(99)00003-8 |
[5] | Pines O, Inouye M (1999) Expression and secretion of proteins in E. coli. Mol Biotechnol 12: 25–34. doi: 10.1385/MB:12:1:25 |
[6] | Ong CL, Beatson SA, McEwan AG, et al. (2009) Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl Environ Microbiol 75: 6783–6791. doi: 10.1128/AEM.00974-09 |
[7] | Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412: 442–445. doi: 10.1038/35086581 |
[8] | Reisner A, Höller BM, Molin S, et al. (2006) Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J Bacteriol 188: 3582–3588. doi: 10.1128/JB.188.10.3582-3588.2006 |
[9] | Reisner A, Haagensen JA, Schembri MA, et al. (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48: 933–946. doi: 10.1046/j.1365-2958.2003.03490.x |
[10] | May T, Okabe S (2008) Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli. J Bacteriol 190: 7479–7490. doi: 10.1128/JB.00823-08 |
[11] | Yang X, Ma Q, Wood TK (2008) The R1 conjugative plasmid increases Escherichia coli biofilm formation through an envelope stress response. Appl Environ Microbiol 74: 2690–2699. doi: 10.1128/AEM.02809-07 |
[12] | Król JE, Nguyen HD, Rogers LM, et al. (2011) Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 77: 5079–5088. doi: 10.1128/AEM.00090-11 |
[13] | Norman A, Hansen LH, She Q, et al. (2008) Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 60: 59–74. doi: 10.1016/j.plasmid.2008.03.003 |
[14] | Burmølle M, Bahl MI, Jensen LB, et al. (2008) Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 154: 187–195. doi: 10.1099/mic.0.2007/010454-0 |
[15] | May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 53: 4628–4639. doi: 10.1128/AAC.00454-09 |
[16] | Castonguay MH, van der Schaaf S, Koester W, et al. (2006) Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res Microbiol 157: 471–478. doi: 10.1016/j.resmic.2005.10.003 |
[17] | Gallant CV, Daniels C, Leung JM, et al. (2005) Common β-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58: 1012–1024. doi: 10.1111/j.1365-2958.2005.04892.x |
[18] | Lim JY, Yoon J, Hovde CJ (2010) A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20: 5–14. |
[19] | Burland V, Shao Y, Perna NT, et al. (1998) The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26: 4196–4204. doi: 10.1093/nar/26.18.4196 |
[20] | Lim JY, La HJ, Sheng H, et al. (2010) Influence of plasmid pO157 on Escherichia coli O157:H7 Sakai biofilm formation. Appl Environ Microbiol 76: 963–966. doi: 10.1128/AEM.01068-09 |
[21] | Huang CT, Peretti SW, Bryers JD (1993) Plasmid retention and gene expression in suspended and biofilm cultures of recombinant Escherichia coli DH5α (pMJR1750). Biotechnol Bioeng 41: 211–220. doi: 10.1002/bit.260410207 |
[22] | Huang CT, Peretti SW, Bryers JD (1994) Effects of inducer levels on a recombinant bacterial biofilm formation and gene expression. Biotechnol Lett 16: 903–908. doi: 10.1007/BF00128622 |
[23] | Bryers JD, Huang CT (1995) Recombinant plasmid retention and expression in bacterial biofilm cultures. Wat Sci Tech 31: 105–115. |
[24] | O’Connell HA, Niu C, Gilbert ES (2007) Enhanced high copy number plasmid maintenance and heterologous protein production in an Escherichia coli biofilm. Biotechnol Bioeng 97: 439–446. doi: 10.1002/bit.21240 |
[25] | Teodósio JS, Simões M, Mergulhão FJ (2012) The influence of nonconjugative Escherichia coli plasmids on biofilm formation and resistance. J Appl Microbiol 113: 373–382. doi: 10.1111/j.1365-2672.2012.05332.x |
[26] | Mergulhão FJ, Taipa MA, Cabral JM, et al. (2004) Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J Biotechnol 109: 31–43. doi: 10.1016/j.jbiotec.2003.10.024 |
[27] | Gomes LC, Carvalho D, Briandet R, et al. (2016) Temporal variation of recombinant protein expression in Escherichia coli biofilms analysed at single-cell level. Process Biochem 51: 1155–1161. doi: 10.1016/j.procbio.2016.05.016 |
[28] | Ferreira C, Pereira AM, Pereira MC, et al. (2011) Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens. J Antimicrob Chemother 66: 1036–1043. doi: 10.1093/jac/dkr028 |
[29] | Ferreira C, Pereira AM, Melo LF, et al. (2010) Advances in industrial biofilm control with micro-nanotechnology, In: Méndez-Vilas A, editor. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz: Formatex, 845–854. |
[30] | Yanischperron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119. doi: 10.1016/0378-1119(85)90120-9 |
[31] | Sambrook J, Russell DW (2001) Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press. |
[32] | Teodósio JS, Simões M, Melo LF, et al. (2011) Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 27: 1–11. |
[33] | Gomes LC, Silva LN, Simões M, et al. (2015) Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. J Biomed Mater Res A 103: 1414–1423. doi: 10.1002/jbm.a.35277 |
[34] | Mergulhão FJ, Monteiro GA (2007) Analysis of factors affecting the periplasmic production of recombinant proteins in Escherichia coli. J Microbiol Biotechnol 17: 1236–1241. |
[35] | Bentley WE, Mirjalili N, Andersen DC, et al. (1990) Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35: 668–681. doi: 10.1002/bit.260350704 |
[36] | Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115: 113–128. doi: 10.1016/j.jbiotec.2004.08.004 |
[37] | Cunningham DS, Koepsel RR, Ataai MM, et al. (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 8: 1475–2859. |
[38] | Hoffmann F, Weber J, Rinas U (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol Bioeng 80: 313–319. |
[39] | Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli, In: Enfors S-O, editor. Physiological Stress Responses in Bioprocesses, Berlin: Springer-Verlag Berlin Heidelberg, 73–92. |
[40] | Landini P (2009) Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 160: 259–266. doi: 10.1016/j.resmic.2009.03.001 |
[41] | Kurland CG, Dong H (1996) Bacterial growth inhibition by overproduction of protein. Mol Microbiol 21: 1–4. doi: 10.1046/j.1365-2958.1996.5901313.x |
[42] | Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13: 247–261. doi: 10.1016/0734-9750(95)00004-A |
[43] | Xia XX, Qian ZG, Ki CS, et al. (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107: 14059–14063. doi: 10.1073/pnas.1003366107 |
[44] | Yang YX, Qian ZG, Zhong JJ, et al. (2016) Hyper-production of large proteins of spider dragline silk MaSp2 by Escherichia coli via synthetic biology approach. Process Biochem 51: 484–490. doi: 10.1016/j.procbio.2016.01.006 |
[45] | Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177: 1497–1504. doi: 10.1128/jb.177.6.1497-1504.1995 |
[46] | Georgiou G, Shuler ML, Wilson DB (1988) Release of periplasmic enzymes and other physiological effects of β-lactamase overproduction in Escherichia coli. Biotechnol Bioeng 32: 741–748. doi: 10.1002/bit.260320603 |
[47] | Williams I, Venables WA, Lloyd D, et al. (1997) The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 143: 2407–2413. doi: 10.1099/00221287-143-7-2407 |
[48] | Simões M, Pereira MO, Vieira MJ (2005) Effect of mechanical stress on biofilms challenged by different chemicals. Water Res 39: 5142–5152. doi: 10.1016/j.watres.2005.09.028 |
[49] | Araújo PA, Mergulhão FJM, Melo LF, et al. (2014) The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling 30: 675–683. doi: 10.1080/08927014.2014.904294 |
[50] | Cloete TE, Jacobs L, Brözel VS (1998) The chemical control of biofouling in industrial water systems. Biodegradation 9: 23–37. doi: 10.1023/A:1008216209206 |
[51] | Ahimou F, Semmens MJ, Haugstad G, et al. (2007) Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Appl Environ Microbiol 73: 2905–2910. doi: 10.1128/AEM.02420-06 |