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Abstract: As the market of electric vehicles is gaining popularity, large-scale commercialized or
privately-operated charging stations are expected to play a key role as a technology enabler. In this
paper, we study the problem of charging electric vehicles at stations with limited charging machines
and power resources. The purpose of this study is to develop a novel profit maximization framework
for station operation in both offline and online charging scenarios, under certain customer satisfaction
constraints. The main goal is to maximize the profit obtained by the station owner and provide a
satisfactory charging service to the customers. The framework includes not only the vehicle scheduling
and charging power control, but also the managing of user satisfaction factors, which are defined as
the percentages of finished charging targets. The profit maximization problem is proved to be NP-
complete in both scenarios (NP refers to “nondeterministic polynomial time”), for which two-stage
charging strategies are proposed to obtain efficient suboptimal solutions. Competitive analysis is also
provided to analyze the performance of the proposed online two-stage charging algorithm against the
offline counterpart under non-congested and congested charging scenarios. Finally, the simulation
results show that the proposed two-stage charging strategies achieve performance close to that with
exhaustive search. Also, the proposed algorithms provide remarkable performance gains compared
to the other conventional charging strategies with respect to not only the unified profit, but also other
practical interests, such as the computational time, the user satisfaction factor, the power consumption,
and the competitive ratio.
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1. Introduction

Electric Vehicle (EV) is a promising solution to future green transportation needs due to its
economic and environmental benefits, such as fuel economy, reduction of petroleum consumption,
and reduction of environmental pollution [1, 2]. According to the US Environmental Protection
Agency [3], a typical EV can transform about 59% to 62% of the electrical energy to power, while
conventional gasoline vehicles can only transform about 17% to 21% of the energy stored in gasoline
to power. Moreover, it is well known that fossil fuel energy sources are becoming more and more
scarce. EVs help us mitigate this problem by utilizing green energy sources via smart grids, such as
wind power, solar energy, hydroelectric energy, ocean energy, etc. In addition, the adoption of EVs
could help reduce the global emission of carbon dioxide (CO2) in half by 2050 as predicted in [1],
which will significantly mitigate the environmental pollution.

In this work, we study the charging problem for EVs. Currently, there are mainly three methods of
charging EVs: battery swapping, residential∗ charging, and public† charging. Here, we focus on the
public charging scenario, where the total power demand will cause an additional load on the power grid
that might seriously affect the grid stability when each EV is charged at a fixed high charging speed
and the number of EVs is large. Several studies have shown that the current power grid infrastructure
might not be able to support a large number of EVs being charged simultaneously [5–8]. On the other
hand, according to the International Energy Agency [1], the adoption of electric vehicles will increase
exponentially from 2010 to 2050, achieving an annual global sale of 106 million EVs. The vehicle
industry also predicts a global adoption of 20 million EVs by the end of 2020 [7], which will increase
the power load to approximately 60 GW when all EVs are charged at the same time even at a slow
charging speed (e.g., 3 kW/h [9]). Therefore, it is important to take into account the power overloading
issues when designing the EV charging strategies.

Two types of EV charging solutions with power control have been studied in past years based
on the mode of charging station operation: offline EV charging (the station knows the present and
future charging information, say, through a reservation system) and online EV charging (the station
knows only the present charging information). Many studies have been conducted to analyze the EV
charging problems in residential environments for both offline [10–13] and online [14–18] solutions.
In contrast to residential charging, public charging can serve EV customers in more flexible places
and provide faster charging services. The authors in [19, 20] studied the offline EV charging problem
in a public environment. Due to the difficulty of collecting charging information in advance in the
public domain, several works have been conducted to study the online EV charging problem in public
environments [21–23].

Note that all the works in [10, 23] consider EV charging scenarios with a sufficient number of
charging machines to satisfy the charging requests of all customers. However, as aforementioned,
the number of EVs will increase drastically in the next few years, which shows the importance of
developing scheduling strategies to accommodate more EVs and better utilize the charging station
resources.

The general scheduling problem in multiple-machine scenarios has been studied during the past
decades [24–26]. For the offline EV charging-scheduling problem, the authors in [27] presented a
two-stage cost minimization framework that optimizes the power allocation, the energy price, and
the EV scheduling. The presented framework minimizes the power losses and voltage deviations at
the first stage and the cost of users at the second stage. In [28], an EV charging mechanism was
∗Each household owns a private station to charge the owner’s vehicle.
†Each public facility owns multiple charging machines to serve a large number of EVs.
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proposed to optimize the EV scheduling in order to reduce the total charging time. They formulated
this problem as an integer programming (IP) problem that is proved to be NP-complete. Two heuristic
algorithms were proposed: the Earliest Start Time (EST) algorithm and the Earliest Finish Time (EFT)
algorithm. Also, several approaches have been developed to study the online EV charging-scheduling
problem [29–31]. The authors in [29, 30] presented some online charging scheduling mechanisms to
maximize the unified profit of the system in single-machine and multiple-machine scenarios. In [31],
an online charging strategy was proposed to schedule EV charging among multiple charging machines
and allocate power to the EVs in order to minimize the time-averaged electricity cost.

It is also worth noticing that the works in [10, 31] aim to provide a full-charge service to their
customers. However, under large-scale scenarios, if the station must fully charge each EV, the high
power demand and charging facility requirements might negatively impact the profit of the operator. In
this work, we introduce the concept of user satisfaction factor control. The main idea is to adjust the
fulfilled percentage of the charging target for each user in order to strike a balance between the profit
and the quality of service (QoS).

Our work focuses on maximizing a unified profit for EV charging, while providing a satisfactory
service in both offline and online scenarios. Based on our results, we claim that the proposed EV
charging strategies not only increase the station profit, but also address the issues of power overloading
and charging station shortage.

The main contributions of this study are summarized as follows:

• A profit maximization framework for charging is proposed, which jointly schedules EVs,
allocates power, and adjusts the user satisfaction factor, under peak power and charging facility
constraints. It is shown that the profit maximization problem is NP-complete in both offline and
online scenarios.
• An efficient two-stage charging strategy is proposed to efficiently solve the profit maximization

problem for each charging scenario.
• The computational complexity is analyzed for both offline and online algorithms, where it shows

that the greedy scheduling algorithm outperforms the linear programming (LP) relaxation
scheduling algorithm in terms of computational time by slightly sacrificing the overall profit.
• A competitive analysis for the online two-stage charging algorithm is provided. The lower bound

of competitive ratio is derived in terms of the unified profit for a special case.
• Simulation results show that the proposed offline and online two-stage LP and greedy strategies

provide promising results with respect to the unified profit, the computational time, the user
satisfaction factor, the power consumption, and the competitive ratio.

The rest of the paper is organized as follows. In Section 2.1, we describe the system model. In
Section 2.2, we present the profit maximization framework under the offline charging setup and
introduce the offline two-stage charging strategy. Similarly, we study the online charging setup and
introduce an online two-stage charging strategy and analyze its properties in Section 2.3. In addition,
we provide a competitive ratio analysis to analyze the proposed online two-stage charging algorithms.
In Section 3, we present simulation results to illustrate the performance of the proposed offline and
online two-stage charging strategies. Finally, we summarize the main results and contributions, and
discuss some promising future research directions in Section 4.
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2. Methodology

2.1. System model

Suppose that the EV charging operator owns C charging machines that each operates in a time-
slotted fashion. During the day, a total ofN vehicles arrive at the facility, and are accommodated in the
station’s parking lots, where each lot has a plug connectable to an arbitrary charging machine through
a switching bar system, as shown in Figure 1.

Figure 1. Connection between charging machines and plugs.

We consider a finite time horizon (e.g. 24 hours) that contains T time slots. For each EV i, let
the charging job be described by the arrival time ri ∈ [1, T ], the departure time di ∈ [1, T ], and the
required energy wi, where ri < di ≤ T . The charging period of each EV is denoted by Ti = [ri, di]
and its length is given by |Ti| = di − ri + 1.

2.2. Offline EV charging-scheduling problem

In the offline charging scenario, we assume the station is equipped with an web-based reservation
system such that every EV owner can book both the parking lot and charging needs (i.e., [ri, di] and
wi). The station utilizes the above information to design the charging strategy to obtain the maximum
profit.

In the offline EV charging-scheduling problem the goal is to maximize the unified overall profit for
the charging station by jointly optimizing over the EV scheduling, the charging power, and the user
satisfaction factor that is defined as the percentage of charging given the desired target energy wi. The
scheduling of EVs at time t is represented by X t = {xti,j}, where 1 ≤ i ≤ N , 1 ≤ j ≤ C, and xti,j is
given by

xtij =

{
1, if the ith EV is assigned to the jth charging machine at time t,
0, otherwise.
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Then, the overall scheduling is denoted by X = {X1, X2, . . . , XT}. Similarly, the charging power
at time slot t is represented by P t = {pti,j}, where pti,j is the charging power level of the jth machine for
the ith EV at time t. Here, we assume that the pti,j is limited by a safe maximum charging power psafe,
which is a system constant set by the operator in advance. The overall power allocation is denoted by
P = {P 1, P 2, . . . , P T}. Note that we normalize the slot length such that the power allocation vector
is also representing the energy charging vector. Now, let γ = {γ1, γ2, . . . , γN} denote the set of user
satisfaction factors, at which each vehicle is serviced by the end of the schedule, where γi ∈ [γmin, 1]
for 1 ≤ i ≤ N . Here, we assume that the minimum user satisfaction factor γmin is also a system
constant set by the operator in advance.

Next, we define the unified profit function for offline charging, which is formulated as the
difference between a linear revenue function and a quadratic cost function in order to make the profit
maximization problem economically plausible and computationally tractable [32]. Let α > 0 be the
price per unit electrical energy (e.g., $/kWh) sold to the customers, and the revenue function is given
as

U(X,P ) = α
T∑
t=1

C∑
j=1

N∑
i=1

ptijx
t
ij.

The operation cost of the station includes two parts:

• The power consumption cost is given by

C1(X,P ) = β
T∑
t=1

(
C∑
j=1

N∑
i=1

ptijx
t
ij

)2

,

where β > 0 is the purchase cost weighting parameter. Note that the quadratic dependence reflects
the fact that the per unit cost of power consumption for the operator increases as the total demand
increases, which is matching the differential pricing strategy in power market [33].
• The second part of operation cost is the satisfaction penalty, which is given by

C2(X, γ) = η
C∑
j=1

N∑
i=1

(
wi − γiwi

)2
1{

T∑
t=1

xtij≥1

},

where η > 0 is the penalty weighting parameter. The function C2(X, γ) is defined to be the residual
sum of the squared discrepancy between the delivered and the desired values.

We assume that α, β, and η are constants over time and known by the system in advance. With the
notations introduced above, the unified profit of the system is given by:

F (X,P, γ) = U(X,P )− [C1(X,P ) + C2(X, γ)] .

Thus, the overall offline EV charging-scheduling problem can be formulated as:

maximize
X,P,γ

F (X,P, γ) (1)

subject to
C∑
j=1

N∑
i=1

ptijx
t
ij ≤ pmax, t = 1, . . . , T ; (1.1)

γiwi ≤
di∑
t=ri

ptijx
t
ij ≤ wi, i = 1, . . . , N, j = 1, . . . , C; (1.2)
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C∑
j=1

xtij ≤ 1, i = 1, . . . , N, t = 1, . . . , T ; (1.3)

N∑
i=1

xtij ≤ 1, j = 1, . . . , C, t = 1, . . . , T ; (1.4)

xtij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T ; (1.5)

0 ≤ ptij ≤ psafe, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T ; (1.6)

γmin ≤ γi ≤ 1, i = 1, . . . , N. (1.7)

Here, (1.1) ensures that the total power allocation at each time slot does not exceed the power limit
pmax; (1.2) guarantees that every EV will be charged at or above the percentage defined by the
satisfaction factor; (1.3) and (1.4) indicate that every single machine can only charge one vehicle at a
time and each EV can only be charged by one machine at a time; (1.5) defines the charging machine
assignment indicator; (1.6) defines the feasible range for individual pti,j , which is limited by a safe
maximum charging power psafe for EVs; and (1.7) requires the user satisfaction factor to meet a
minimum target.

Notice that Problem (1) is a mixed integer linear programming (MILP) problem due to the EV
scheduling constraint (1.5). Theorem 2.1 below establishes the complexity of solving Problem (1) in
an offline charging scenario.

Theorem 2.1. The EV charging problem (1) is NP-complete.

Proof: To prove a problem is NP-complete, we need to show it is both NP and NP-hard. First, we
prove that Problem (1) is NP. Recall that a problem is considered to be NP if the verification process
can be done in polynomial time. We assume that we are given some instances and S is our certificate.
A deterministic algorithm verifies whether each EV i ∈ {1, 2, . . . , N} is assigned to any charging
machine j ∈ {1, 2, . . . , C}. Then, it checks if the total number of vehicles being charged is less than
or equal to C and if the total power consumption is less than or equal to pmax at each time slot. Notice
that the verification process can be completed in polynomial time O(NC). Therefore, our problem is
NP.

Next, consider the special case when the power is uniformly allocated and the user satisfaction
factors are set to be equal to 1, which means all EVs must be fully charged. Problem (1) is then
reformulated as:

maximize
X

C∑
j=1

N∑
i=1

(
αwi − β

w2
i

|Ti|
− 2β

wi
|Ti|

N∑
k=1,k 6=i

|Tik|wk
|Tk|

)
xij (2)

subject to
C∑
j=1

N∑
i=1

wi
|Ti|

xtij ≤ pmax, t = 1, . . . , T ; (2.1)

C∑
j=1

xtij ≤ 1, i = 1, . . . , N, t = 1, . . . , T ; (2.2)

N∑
i=1

xtij ≤ 1, j = 1, . . . , C, t = 1, . . . , T ; (2.3)

xtij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T, (2.4)
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where xij =
T∑
t=1

xtij and |Tik| is the number of time slots when job i and job k overlap.

Then, we prove that Problem (2) is NP-hard. Notice that Problem (2) can be reduced from the
problem of fixed time interval scheduling with parallel machines [34–36], or the resource allocation
problem addressed in [37, 39], which both have been largely studied and proven to be NP-hard. Thus,
according to the reducibility principle, we can claim that Problem (2) is at least as “hard” as those
problems, which implies it is also NP-hard.

Since Problem (1) contains the combinatorial optimization Problem (2) with fixed power allocation
and user satisfaction factor, we can claim that Problem (1) is also NP-hard. Therefore, we conclude
that Problem (1) is both NP and NP-hard, which proves its NP-completeness. �

The optimal solution to NP-complete problems can be obtained by exhaustive search, but the
computational cost is far too high. In Section 2.2.1, we propose an offline two-stage charging strategy
to find an efficient suboptimal solution to Problem (1).

2.2.1. Offline two-stage charging strategy

As aforementioned, the station might not be able to serve all EVs that require service at each time
slot due to the limited number of charging machines. Therefore, the station needs to first determine
“whom” it will charge (i.e., a subset of vehicles with a maximum size C) at each time slot and then
decide “how much” it should charge. Thus, our offline two-stage charging strategy is to first find a
schedule for the EVs and then optimize the charging power and user satisfaction factors. Then, it
verifies if each EV is charged with at least the minimum user satisfaction factor.

Specifically, the first stage, called Electric Vehicle Scheduling (EVS), is responsible for finding the
feasible schedule for the EVs such that the unified profit is maximized given a fixed charging power
solution and the desired user satisfaction factors. Based on such a schedule obtained in the first stage,
the second stage, called Power and QoS Optimization (PQO), optimizes the power allocation and the
user satisfaction factors under the peak power and charging level constraints. Then, the algorithm
verifies if every EV is charged with at least γmin of the desired energy target. If not, the EVs with
invalid γi’s are rejected and the overall algorithm is re-executed until a feasible solution is found. The
final charging solution will be obtained after these steps.

Electric Vehicle Scheduling (EVS)

The goal here is to find a feasible schedule of EVs, which maximizes the unified profit under a
fixed set of power allocation and user satisfaction factors. We introduce two algorithms: the offline
LP relaxation and greedy scheduling algorithms. Here, we set ptij = wi

|Ti| and γi = 1 for all i ∈
{1, 2, . . . , N}, j ∈ {1, 2, . . . , C}, and t ∈ [ri, di]. This special problem can be formulated as Problem
(2).

(a) Offline LP relaxation scheduling algorithm

In this algorithm, the idea is to relax the EV scheduling constraints (2.4) by replacing xtij ∈ {0, 1}
with a weaker constraint 0 ≤ xtij ≤ 1. The obtained optimal fractional solution to the relaxed LP
problem is then rounded using a derandomization algorithm [40]. In this work, we obtain the desired
integer solution x̃tij ∈ {0, 1} by rounding the fractional solution xtij to the closest integer. This
approximation algorithm runs in polynomial time and determines a feasible solution, which is close to
the optimal solution. The LP relaxation scheduling problem can be formulated from Problem (2) by
letting 0 ≤ xtij ≤ 1. It can be shown that the offline LP relaxation scheduling algorithm guarantees at
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least (e − 1)/e of the optimal solution in the worst-case scenarios [41, 43]. In the following theorem,
we analyze the complexity of the proposed scheduling algorithm.

Theorem 2.2. Given a set of N jobs and C machines, the offline LP relaxation scheduling algorithm
finds a feasible schedule in O (T ·min{N,C} · (2N + T + 1)) time.

Proof: The algorithm starts by solving the relaxed LP Problem (5). This part needs
O (min{N,C} · T · (2N + T )) computation times. Here, min{N,C} · T is the number of variables
and (2N + T ) is the number of constraints. After the relaxed LP Problem (5) is solved, the algorithm
needs to round the fractional solutions to obtain the desired integer solution. Here, the rounding
process takes O (min{N,C} · T ) computation times. Finally, the total computational time of the
offline LP relaxation scheduling algorithm is O (T ·min{N,C} · (2N + T + 1)). �

As shown in Theorem 2.2, finding the exact EV schedule at each time slot to maximize the unified
profit is a challenging task, specially in large-scale systems. In the next subsection, we address this
problem by proposing an offline greedy scheduling algorithm that decides whether to schedule an EV
based on its individual profit and charging time. We will show later that, in contrast to the LP relaxation
approach, the computational time of the greedy scheduling algorithm does not increase rapidly with
respect to the number of variables, at the cost of sacrificing certain optimality.

(b) Offline greedy scheduling algorithm

The offline greedy scheduling algorithm (see Algorithm 1) schedules the EVs to idle charging
machines in a non-increasing order over their individual profits. The algorithm first calculates the
individual profit of all users and sorts them into a non-increasing order (i.e., f1 ≥ f2 ≥ . . . ≥ fN ). If
two or more EVs have the same individual profit, the algorithm chooses the one with the shortest
charging time. Then each job is scheduled based on this order until all the charging machines are
occupied. After that, the system has to make the decision whether to accept or decline some new
charging requests. The station checks if part of the latest charging job can be processed and chooses
the machine that provides the largest profit. If this is not possible, the requested charging job is
declined. In [44, 45], the authors proposed a similar algorithm based on individual profit
maximization. Their approach schedules only the non-overlapping jobs with the highest individual
profit. But our algorithm is able to schedule part of certain charging jobs, which improves the unified
profit. The proposed greedy algorithm guarantees at least 1/2 of the optimal solution in the
worst-case scenarios [44]. The following theorem derives the computational time of the offline greedy
scheduling algorithm.

Theorem 2.3. Given a set of N jobs and C machines, the offline greedy scheduling algorithm finds a
feasible schedule in O (N(logN + C)) time.

Proof: The algorithm starts by calculating the individual profit of each user and then sorting them
into a non-increasing order. The process of sorting the N charging jobs takes O (N logN) time. Then,
the algorithm schedules the sorted jobs one by one to the idle machines. Since the algorithm needs
to check if the latest job can be scheduled to any machine, the process of selecting the machine takes
O (NC) time. Therefore, the total computational time of the offline greedy scheduling algorithm is
O (N(logN + C)). �
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Table 1. Algorithm 1: Offline greedy scheduling algorithm.

1. Let X be the overall EV schedule and S be the set of accepted EVs. Initialize X and S.
2. Let pit = wi

|Ti| and γi = 1 for all i = 1, . . . , N , t = 1, . . . , T , where Ti is the charging period of
EV i.

3. Calculate the individual profit fi = αwi − β
w2

i

|Ti| − 2β wi

|Ti|
∑

1≤k≤N
k 6=i

|Tik|wk

|Tk|
for all i = 1, . . . , N ,

t = 1, . . . , T , where |Tik| is the number of time slots when job i overlaps with job k.
4. Sort users in a non-increasing order of their individual profits. If two or more EVs have the same

individual profit, choose the one with the shortest charging time first.
5. Run the following:

FOR i := 1 TO N DO
Let Hi = {j : j is idle between time ri and di, j ∈ {1, 2, . . . , C}}.
IF |Hi| ≥ 1 THEN
z∗i = min{j : j ∈ Hi}.
Let xti = z∗i , for ri ≤ t ≤ di.

ELSE
Calculate |Gik|, the number of time slots when job i does not
overlap with job k.
IF |Gik| > 0 for any k ∈ {1, 2, . . . , N} THEN

Choose k∗ = argmax
k∈{1,2,...,N},k 6=i

|Gik|.

Let xti = xtk∗ , for t ∈ Gik.
ELSE

Reject EV i.
END IF

END IF
END FOR

6. Output X and S.

Power and QoS Optimization (PQO)

The goal in this stage is to maximize the unified profit of the system based on the schedule obtained
from EVS. Recall that given a schedule X̃ , the unified profit is given by

F (P, γ) =
T∑
t=1

α C∑
j=1

N∑
i=1

ptij − β

(
C∑
j=1

N∑
i=1

ptij

)2
− η C∑

j=1

N∑
i=1

(
wi − γiwi

)2
.

Based on the knowledge of future charging requests, we can partition the schedule according to
multiple independent groups of EVs based on their arrival and departure times. Here, the EVs from
different independent groups are not overlapping in term of their charging times. Those EVs will be
in one group if each EV in this group is overlapping with at least another EV in this group. For
instance, as shown in Figure 2, we can partition the set of scheduled users {1, 2, 3, 4, 5, 6, 7, 8, 9} into
three independent groups {1, 2, 3}, {4, 5, 6}, and {7, 8, 9}.

Let M denote the number of independent groups. For 1 ≤ m ≤ M , let Im be the set of EVs
included in the mth group, and |Im| be the size of Im. The charging period of the mth group is denoted
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by Dm = [mini∈Im ri,maxi∈Im di] and its length is given by |Dm| = maxi∈Im di −mini∈Im ri + 1.
After grouping, the original problem is divided into multiple subproblems, which can be solved

independently by the same technique. Thus, the unified profit for the station is given by the sum of
the profits from each group m. The optimization problem to find the profit for the mth group can be
formulated as:

maximize
P,γ

∑
t∈Dm

α∑
i∈Im

ptij − β

(∑
i∈Im

ptij

)2
− η∑

i∈Im

(wi − γiwi)2 (3)

subject to
∑
i∈Im

ptij ≤ pmax, j = 1, . . . , C,m = 1, . . . ,M, t ∈ Dm; (3.1)

γiwi ≤
di∑
t=ri

ptij ≤ wi, i ∈ Im, j = 1, . . . , C,m = 1, . . . ,M ; (3.2)

0 ≤ ptij ≤ psafe, i ∈ Im, j = 1, . . . , C,m = 1, . . . ,M, t ∈ Dm; (3.3)

0 ≤ γi ≤ 1, i ∈ Im. (3.4)

Figure 2. Partition the set of all users into independent groups.

The above problem is a convex quadratic problem, and thus its optimal solutions can be obtained
by solving the Karush-Kuhn-Tucker (KKT) conditions [46]. For better exposition, let Wm =

∑
i∈Im

wi

be the total energy demanded by the mth group of EVs.

Remark 2.1. In order to better understand the structure of the optimal solution for Problem (3), it is
worth analyzing the relationship between the achievable profit andWm, which is shown in Figure 3. Let
R1 = α|Dm|

2β
and R2 = 1

2η
{2 min (|Im|psafe, pmax) (|Im|β + η|Dm|)− α|Im|} for notation simplicity.

Then, we observe the following operation regions:

• When Wm ∈ [0, R1), the profit increases as Wm increases until its maximum is reached. This
region can be viewed as the “low demand” region, where it is anticipated that the station can fully
satisfy all EVs in the mth group.
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Figure 3. Impact of the energy demand on the unified profit of the system.

• When Wm ∈ [R1, R2], the profit starts decreasing but remains acceptable.
• When Wm ∈ (R2,∞), the profit decreases fast until it reaches 0. In this region, the energy

demand is too high, which is beyond the capability of the charging station. It will be shown later
that in this region, no EV can be fully charged.

In Theorem 2.4 below, we provide the optimal solution to the sum charging power and the user
satisfaction factors for a given feasible schedule.

Theorem 2.4. The optimal solution to Problem (3) is given as follows:

• If 0 ≤ Wm < R1, γ∗i = 1 and
∑

i∈Im p
∗
ij
t =

∑
i∈Im

wi

|Dm| .

• If R1 ≤ Wm ≤ R2, γ∗i = 1− 2β
∑

i∈Im wi−α|Dm|
2wi(|Im|β+η|Dm|) and

∑
i∈Im p

∗
ij
t =

α|Im|+2η
∑

i∈Im wi

2(|Im|β+η|Dm|) .

• If Wm > R2, γ∗i = 1−
∑

i∈Im wi−|Dm|min(|Im|psafe, pmax)
|Im|wi

and
∑

i∈Im p
∗
ij
t = min (|Im|psafe, pmax) .

As aforementioned, this problem can be solved by standard convex optimization techniques. The
detailed proof is presented in Appendix A.

Remark 2.2. We can obtain the following lower and upper bounds of γ∗i from Theorem 2.4.

• If 0 ≤ Wm < R1, then γ∗i = 1.
• If R1 ≤ Wm ≤ R2, then 1− 2βmin(|Im|psafe, pmax)−α

2ηwi
≤ γ∗i ≤ 1.

• If Wm > R2, then 0 ≤ γ∗i < 1− 2βmin(|Im|psafe, pmax)−α
2ηwi

.

From the station owner’s point of view, the station is able to compute the guaranteed range of user
satisfaction factor based on the total energy demand.

Remark 2.3. The optimal sum power
∑

i∈Im p
∗
ij
t is constant over time for all t ∈ Dm. From the KKT

conditions given in the Appendix A, we observe that
∑

i∈Im p
∗
ij
t =

∑
i∈Im

γ∗i wi

|Dm| , where γ∗i ∈ [0, 1].
Notice that the right-hand side of the above equation does not depend on t; therefore the sum power at
each time slot is constant over time.

Remark 2.4. The optimal power allocation P ∗ may not be unique. The system of equations to solve the
power allocation consists of |Im|+(maxi∈Im di−mini∈Im ri+1) equations and |Im|+

∑
i∈Im (di − ri)
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unknown variables. Since the arrival and departure times satisfy ri < di, we have more unknown
variables than equations in most cases. This implies that our system of equations is underdetermined,
and therefore the optimal power allocation P ∗ may not be unique.

As aforementioned, after P ∗ and γ∗ are obtained, the algorithm verifies if every EV satisfies the
condition γ∗i ≥ γmin. If not, the group of EVs with γ∗i < γmin are rejected and the algorithm re-
executes the first and second stages until either a feasible solution is found.

Next, we consider an online charging setup to address the issue when EVs’ charging needs are not
available in advance at public stations.

2.3. Online EV charging-scheduling problem

In contrast to the offline scenario, in the online charging scenario, the operator learns the charging
information on the fly after the EVs are connected to the system. Therefore, the station can only
maximize the instantaneous profit by optimizing the charging process based on the available
information of the customers currently connected and just arrived. Due to the lack of information
about future requests, the online charging strategies are forced to make real-time decisions that may
later turn out to be suboptimal. Thus, it is clear that the online charging mechanisms will always
perform worse than their offline counterparts, or at the best equal.

Specifically, we consider the scenario when the station only has knowledge about the past and
present charging requests. Statistic information about future charging requests is not considered, and
therefore the station can only optimize the charging process of the customers currently connected. We
propose a deterministic and greedy online charging approach that jointly optimizes the EV scheduling,
power allocation, and user satisfaction factors. Let Jn be the set of EVs connected to system when the
new EV n arrives at the station, which includes EV n. The charging period is denoted by Ln =
[rn,maxk∈Jn dk]. Both Jn and Ln are updated at each arrival time based on the current charging
information. The remaining energy requirement is also updated at each period Ln after the arrival

of EV n, given by wLn
i = wi − vLn

i for all i ∈ Jn, where vLn
i =

rn−1∑
t=1

ptij is the energy already delivered

before rn.
Our main goal is to maximize the total profit for the charging station during the period Ln by jointly

optimizing over the EV scheduling, the charging power, and the user satisfaction factor, which is now
updated as the percentage of charging given the updated desired energy wLn

i . Similar to the offline
section, the schedule of all EVs at time t is represented by the matrix X t = {xti,j}, where i ∈ Jn,
1 ≤ j ≤ C, and t ∈ Ln.

Then, the scheduling during the charging period Ln is denoted by XLn = {X t, t ∈ Ln}. Similarly,
the charging power at time slot t is represented by P t = {pti,j}, where pti,j is the charging power
level of the jth machine for the ith EV at t ∈ Ln. As such, the total power allocation is denoted by
PLn = {P t, t ∈ Ln}. Now, let γLn = {γLn

1 , γLn
2 , . . . , γLn

|Jn|} denote the set of user satisfaction factors,
at which each vehicle is guaranteed to be charged at the end of the period Ln, where γLn

i ∈ [0, 1]
for i ∈ Jn. The overall online EV charging problem for a given charging period Ln is formulated as
follows:

maximize
γLn ,XLn ,PLn

∑
t∈Ln

α
C∑
j=1

∑
i∈Jn

ptijx
t
ij − β

(
C∑
j=1

∑
i∈Jn

ptijx
t
ij

)2


− η
C∑
j=1

∑
i∈Jn

(
wLn
i − γ

Ln
i wLn

i

)2
1{ ∑

t∈Ln

xtij≥1

}, (4)
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subject to
C∑
j=1

∑
i∈Jn

ptijx
t
ij ≤ pmax, t ∈ Ln; (4.1)

γLn
i wLn

i ≤
di∑
t=ri

ptijx
t
ij ≤ wLn

i , i ∈ Jn, j = 1, . . . , C; (4.2)

C∑
j=1

xtij ≤ 1, i ∈ Jn, t ∈ Ln; (4.3)∑
i∈Jn

xtij ≤ 1, j = 1, . . . , C, t ∈ Ln; (4.4)

xtij ∈ {0, 1}, i ∈ Jn, j = 1, . . . , C, t ∈ Ln; (4.5)

0 ≤ ptij ≤ Psafe, i ∈ Jn, j = 1, . . . , C, t ∈ Ln; (4.6)

γmin ≤ γLn
i ≤ 1, i ∈ Jn. (4.7)

Here, (4.1) ensures that the total power allocation does not exceed the power limit pmax; (4.2)
guarantees that every EV will be charged at or above the minimum user satisfaction factor provided by
the station; (4.3) and (4.4) indicate that every single machine can only charge one vehicle at a time and
each client can only be assigned to one machine; (4.5) defines the charging machine assignment; (4.6)
defines the feasible range for pti,j; and (4.7) requires the user satisfaction factor to meet a minimum
target.

Notice that Problem (4) has the same structure as Problem (1), and it is also an NP-complete
problem. Thus, we introduce an online two-stage charging strategy as a suboptimal solution to
Problem (4). Our online two-stage charging strategy is to first find a schedule of EVs and then
optimize the charging power and user satisfaction factors, each time a new EV arrives at the station.

2.3.1. Online two-stage charging strategy

In this scenario, the station also needs to first determine “whom” it will charge (i.e., a subset of
vehicles with a maximum size C) and then decide “how much” it should charge at each time slot with
the operation window Ln. In contrast to the offline case, the online EV charging strategy is executed
whenever a new customer arrives at the charging facility. Specifically, every time a new EV arrives at
the station, our online two-stage charging strategy first finds a schedule for the EVs currently connected
to the system and then optimizes the charging power and user satisfaction factors. Afterwards, the
algorithm verifies if every EV could be charged with at least γmin. If not, the new EV is rejected
immediately and the previous charging strategy is resumed.

Electric Vehicle Scheduling (EVS)

The goal here is to find the feasible schedule of EVs that maximizes the instantaneous profit within
Ln. Similar to the offline case, we introduce two algorithms: the online LP relaxation and greedy
scheduling algorithms. We set ptij =

wLn
i

|Ti| and γLn
i = 1. This problem can be formulated as:

maximize
XLn

C∑
j=1

∑
i∈Jn

(
αwLn

i − β
(
wLn
i

)2

|Ti|
− 2β

wLn
i

|Ti|
∑

k∈Jn,k 6=i

|Tik|wLn
k

|Tk|

)
xij (5)

subject to
C∑
j=1

∑
i∈Jn

wLn
i

|Ti|
xtij ≤ pmax, t ∈ Ln; (5.1)
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C∑
j=1

xtij ≤ 1, i ∈ Jn, t ∈ Ln; (5.2)∑
i∈Jn

xtij ≤ 1, j = 1, . . . , C, t ∈ Ln; (5.3)

xtij ∈ {0, 1}, i ∈ Jn, j = 1, . . . , C, t ∈ Ln. (5.4)

where xij =
∑
t∈Ln

xtij and |Tik| is the number of timeslots in Ln when job i and job k overlap.

(a) Online LP relaxation scheduling algorithm

Similar to the approach presented in the offline case, the idea is to replace xtij ∈ {0, 1} with a
weaker constraint 0 ≤ xtij ≤ 1, for all t ∈ Ln. The obtained optimal fractional solution to the relaxed
LP problem is then rounded using the same rounding approach to obtain the desired integer solution
x̃tij ∈ {0, 1}. This online LP relaxation scheduling algorithm is executed every time when a new EV
arrives at the station. It can be shown that this algorithm also runs in polynomial time and guarantees
at least (e−1)/e of the optimal solution in the worst-case scenario. In the following theorem, we show
the complexity of the online LP relaxation algorithm.

Theorem 2.5. Given a set of Jn jobs and C machines at the arrival time rn, the online LP relaxation
scheduling algorithm finds a feasible schedule in approximately
O (N · T ·min{N,C} · (2N + T + 1)) time, where N = maxn |Jn|.

Proof: The proof is similar to that for Theorem 2.2, thus omitted.
Similar to the offline charging scenario, we also propose an online greedy scheduling algorithm to

reduce the computational cost at the expense of decreasing certain optimality.

(b) Online greedy scheduling algorithm

The online greedy scheduling algorithm schedules the EVs to idle machines in a non-decreasing
order over their arrivals. If two or more EVs arrive at the same time, the algorithm chooses the one
with the shortest charging time. Once all machines are occupied, the algorithm needs to decide whether
to accept or decline the new EV.

The online greedy scheduling algorithm (see Algorithm 2) first checks if there is any charging
machine idle to schedule the new EV n. If not, the algorithm calculates the individual profit fk of all
EVs k < n already connected to stations and the individual profit fn of EV n. Then, the algorithm
needs to immediately make the decision whether to accept or decline EV n. If fn ≥ fk for any EV
k < n, the station stops charging EV k and schedule EV n to the relieved charging machine. Moreover,
if fn < fk and dn > dk for any EV k < n, the station starts charging EV n after EV k is charged.
Finally, if none of the above conditions are satisfied, the EV n is declined immediately. The following
theorem derives the computational time of the online greedy scheduling algorithm.

Theorem 2.6. Given a set of Jn jobs andC machines at the arrival time rn, the online greedy scheduling
algorithm finds a feasible schedule in O (N2 (logN + C)) time, where N = maxn |Jn|.

Proof: Here, we proved this theorem using the same approach presented in Theorem 2.3, therefore
it is omitted. �
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Table 2. Algorithm 2: Online greedy scheduling algorithm.

FOR each EV n arriving at the station DO
Let XLn be the total EV schedule and SLn be the set of accepted EVs in Ln.
Initialize XLn and SLn .
FOR t := rn TO maxk∈Jn dk DO

Let Hn = {j : j is idle between time rn and dn, j ∈ {1, 2, . . . , C}}.
IF |Hn| ≥ 1 THEN
z∗n = min{j : j ∈ Hn}.
Let xtn = z∗n, for rn ≤ t ≤ dn.

ELSE
Let ptn = wLn

n

|Tn| and γLn
n = 1, for all t ∈ Ln.

Calculate fn = αwLn
n − β

(wLn
n )

2

|Tn| − 2β w
Ln
n

|Tn|
∑
k<n

|Tnk|wLn
k

|Tk|
, where fn is the

individual profit and |Tnk| is the number of time slots in Ln when job
n and job k overlap.
IF fn ≥ fk THEN

Choose k∗ = argmax
k<n

fn
fk

.

Let xtn = xtk∗ , for rn ≤ t ≤ dn.
ELSE IF fn < fk and |Gnk| > 0 for any k < n THEN

Choose k∗ = argmax
k<n

|Gnk|.

Let xtn = xtk∗ , for t ∈ Gnk∗ .
ELSE

Reject EV n.
END IF

END IF
END FOR
Output XLn and SLn .

END FOR

Power and QoS Optimization (PQO)

The goal in this step is to maximize the profit of the station operator based on the schedule obtained
from the previous stage. The optimization problem to find the maximum instantaneous profit for the
station can be formulated as:

maximize
PLn ,γLn

∑
t∈Ln

α
C∑
j=1

∑
i∈Jn

ptij − β

(
C∑
j=1

∑
i∈Jn

ptij

)2
− η

C∑
j=1

∑
i∈Jn

(
wLn
i − γ

Ln
i wLn

i

)2
(6)

subject to
C∑
j=1

∑
i∈Jn

ptij ≤ pmax, t ∈ Ln; (6.1)

γLn
i wLn

i ≤
di∑
t=ri

ptij ≤ wLn
i , i ∈ Jn, j = 1, . . . , C; (6.2)
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0 ≤ ptij ≤ psafe, i ∈ Jn, j = 1, . . . , C, t ∈ Ln; (6.3)

0 ≤ γLn
i ≤ 1, i ∈ Jn, t ∈ Ln. (6.4)

Similar to the offline case, the above problem is a convex quadratic problem, and thus its optimal
solutions can be obtained by solving the KKT conditions. Let the total energy demanded by the EVs
i ∈ Jn during the period Ln be defined as WLn =

∑
i∈Jn

wLn
i . Let RLn

1 = α|Ln|
2β

and

RLn
2 = 1

2η
[2 min (|Jn|psafe, pmax) (|Jn|β + η|Ln|)− α|Jn|], where RLn

1 and RLn
2 are updated at every

arrival time. We can provide the same operation regions as illustrated in Figure 3 for a given charging
period Ln.

In Theorem 2.7, we provide the optimal solution to the sum of power and the user satisfaction
factors for a given feasible schedule at t ∈ Ln.

Theorem 2.7. The optimal solution for Problem (8) is given as:

• If 0 ≤ WLn < RLn
1 , γ∗i

Ln = 1 and
∑

i∈Jn p
t
ij
∗

=
∑

i∈Jn
wLn

i

|Ln| .

• If RLn
1 ≤ WLn ≤ RLn

2 , γ∗i
Ln = 1− 2β

∑
i∈Jn w

Ln
i −α|Ln|

2wLn
i (|Jn|β+η|Ln|)

and
∑

i∈Jn p
t
ij
∗

=
α|Jn|+2η

∑
i∈Jn w

Ln
i

2(|Jn|β+η|Ln|) .

• If WLn > RLn
2 , γ∗i

Ln = 1−
∑

i∈Jn w
Ln
i −|Ln|min(|Jn|psafe, pmax)

|Jn|wLn
i

and
∑

i∈Jn p
t
ij
∗

= min (|Jn|psafe, pmax) .

As aforementioned, this problem can be solved by standard convex optimization techniques. Notice
that the station learns all the information about the EVs currently connected to the station, and therefore
its solution can be obtained using the same approach presented in Appendix A for the given period of
time. Similar to the offline case, after we obtain the solution to P ∗Ln and γ∗Ln , the algorithm verifies
if all EVs satisfy the condition γ∗Ln

i ≥ γmin. If not, the new EV is rejected immediately. Here, the first
and second stages are not re-executed.

In the next section, we apply the concept of competitive analysis to evaluate the proposed online
two-stage charging strategy under non-congested and congested scenarios.

2.4. Competitive analysis

In this section, we apply the concept of competitive ratio to evaluate the proposed online
algorithms against the offline counterparts and derive the closed-form expressions for a special
scenario. For general cases, we will illustrate the competitive ratio performance by simulations. The
main idea behind competitive analysis is to ensure that an online algorithm could guarantee an
acceptable performance degradation compared to the offline algorithm. The concept of competitive
ratio is defined below [47].

Definition 1. An online algorithm is σ-competitive if minJ∈Υ
Fon(J)
Foff(J)

≥ σ, where J is an input instance
with N jobs, Υ is the collection of instances, and Fon(J) and Foff(J) are the unified profits obtained by
the online and offline charging algorithms, respectively.

Here, as an special case, we derive the competitive ratio when each EV has a different arrival time
ri, with the same departure time d, user satisfaction factor γ = 1, and energy requirement W . In
the following theorem, we provide lower bounds of the competitive ratio in this special case under
non-congested and congested scenarios.

Theorem 2.8. Given an arbitrary arrival time, a fixed departure time, the same user satisfaction
factor γ = 1, and the same energy requirement W , the lower bounds of the competitive ratio for
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non-congested and congested scenarios are given as follows:
(a) Non-congested (N-C) scenario (i.e. Gt ≤ C for all t ∈ [1, T ])

σ ≥ αT − 2βWN

αT − βWN
,

(b) Congested (C) scenario (i.e. Gt > C for any t ∈ [1, T ])

σ ≥
αWC

(
|S|−C
T

+ 1
)
− βW 2

[
2|S|C
T

+ |S|−C
C

+ 2(|S|−C)2

T−2(|S|−C)+1

]
αW |S| − βW 2|S|2

T

,

where Gt is the number of EVs being charged at time t and S is the set of all EVs scheduled.

The detailed proof of Theorem 2.8 is presented in Appendix B. The lower bounds of the competitive
ratio under non-congested and congested scenarios in the mentioned special case are illustrated in
the next section. The setup of parameters is given in the next section. The numerical evaluation of
competitive ratio for general cases is given in the next section.

3. Numerical Results and Discussion

This section presents some simulation results to illustrate the performance of our offline and online
two-stage charging algorithms. A numerical analysis has been conducted using the MATLAB-based
optimization tool CVX [48] on a PC with Intel Core i7-4770, CPU speed 3.40 GHz, and 8 GB RAM.

We consider a public charging station with C = 10 charging machines and T = 48 time slots, each
of which is of length ∆ = 30 minutes. The total demand of the system is limited to pmax = 30kW .
The number of EVs is N = 30, and the amount energy (in kWh) for which the EV demands is
a real number randomly drawn from [10, 40] . All EVs have different arrival and departure times.
We randomly pick ri from [1, 32] and di from [ri + 4, ri + 16]. The charging time is restricted to
be at least 2 hours since current fast charging stations take around 2-3 hours to fully charge an EV
[8]. The minimum user satisfaction factor γmin is set to be 0, 0.5 or 0.7, respectively. Finally, we set
α = 4$/kWh, β = 0.10$/(kWh)2, and η = 0.20$/(kWh)2.

3.1. Offline two-stage charging algorithm

First, we illustrate the performance of our offline two-stage charging algorithms in terms of the
average total profit, average computational time, average user satisfaction factor, and average power
allocation, where the average results are taken over 100 random realizations. In the following
simulations, the number of charging machines is set as C = 10 and a fixed γmin. We compare our
algorithms with an exhaustive search charging algorithm and some conventional charging strategies.

In this subsection, we show the efficiency of our offline two-stage charging algorithms by comparing
them against the exhaustive search algorithm. Because of its complexity, we consider the scenario
when N ≤ 20.

Figure 4 illustrates how the average profit of the station is affected by the number of vehicles N .
For this specific case, both algorithms achieve about 85% of the optimal solution obtained by the
exhaustive search algorithm. We can also observe that both offline two-stage LP algorithms obtain its
maximum profits when N = 20. Such a critical number can also be viewed as the “service capacity”
of the station. The profit will no longer increase due to a faster increasing operation cost, even when
more EVs can be charged.
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Figure 4. Average profit of the offline two-stage algorithms against the exhaustive search.
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Figure 5. Influence of the number of charging machines on the average profit of the station.

Then, we analyze the influence of the number of charging machines C on the average profit. Figure
5 shows that when N = 15, the offline exhaustive search and the offline two-stage LP algorithms need
approximately C = 4 machines to achieve their maximum profits. Meanwhile, the offline two-stage
greedy algorithm needs aboutC = 10 machines to achieve its maximum profit. In terms of the station’s
infrastructure, this information is useful when designing a large scale charging station.

In Table 3, we show the average computational time. Notice that both two-stage algorithms consume
almost the same amount of computational time when N < C. After this point, the computational time
of the offline two-stage LP algorithm increases at a higher rate. Table 3 shows that the exhaustive
search algorithm consumes much more time and resources compared to the proposed strategies. Our
offline two-stage algorithms utilize less system resources to find the solution at the cost of decreasing
the optimality loss. However, as shown in Figure 4, both algorithms provide an acceptable profit
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Table 3. Average computational time (sec).

Number of EVs Exhaustive Search Two-stage LP Two-stage GS
5 18.9932 1.3686 1.2771

10 753.8080 1.9585 1.8642
15 5140.2536 5.3386 2.4304
20 567887.6684 6.6386 2.9947

compared to the optimal solution.
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Figure 6. Benefit of controlling the user satisfaction factor.

We then show the benefit of controlling the user satisfaction factor in Figure 6. When N = 30, the
two-stage LP and greedy algorithms with control of the user satisfaction factor γ achieve a percentage
of charging close to 72%. On the other hand, the two-stage LP and greedy algorithms without γ control
can only guarantee about 60% and 55% percentages of full charging, respectively. Therefore, as shown
in the previous results, the control of user satisfaction factors improves both the profit and the QoS.

Next, we compare our proposed charging strategies with two other practical charging algorithms.
The first one is a greedy searching algorithm with fixed power allocation where the power is delivered
at a constant speed. To fully charge the vehicle, the customers have to stay connected until the
expected charging time ends. The second benchmark model is a greedy search algorithm with
uniform power allocation where the power is allocated uniformly based on the charging times and
energy requirements. Both charging mechanisms utilize a First-In, First-Served (FIFS) scheduling
policy where users are served in the order of their arrivals whenever a charging machine is idle. If all
machines are occupied, the incoming EVs will be rejected. Due to the relatively small number of EVs
nowadays and the simplicity of those algorithms, current public charging stations have implemented
similar ideas to charge the EVs. For example, the EV charging company ChargePoint has
implemented a FIFS waitlist feature to serve their customers [50]. In the following simulations, the
number of charging machines is set as C = 10 and γmin is set to be 0, 0.5 or 0.7, respectively.

In Figure 7, we show the average profit attained by different charging strategies. Notice that both
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Figure 7. Average profit of the offline two-stage algorithms against other practical charging
algorithms.

offline two-stage algorithms outperform the benchmark charging approaches for any value of γmin. The
greedy fixed and uniform power allocation algorithms have very poor performance since they provide
negative profits when N ≥ 22 and N ≥ 28, respectively.
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Figure 8. Average user satisfaction factor of the offline two-stage algorithms against other
practical charging algorithms.

Furthermore, the average user satisfaction factor is shown in Figure 8, where the average is taken
over both random realizations and different customers. We observe that both offline two-stage
algorithms provide about 72% of charging when γmin = 0. Moreover, those algorithms outperform the
conventional charging strategies when γmin = 0.7, achieving about 93% and 89% of charging. This is
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obvious since our algorithms reject all the EVs with γ smaller than γmin. Thus, both algorithms
provide satisfactory results in terms of the user satisfaction factor while providing a higher profit.
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Figure 9. Average power consumption of the offline two-stage algorithms against other
practical charging algorithms.

We present the results related to the average power consumption in Figure 9, where the average is
taken over both random realizations and time. Notice that, for any value of γmin, the proposed offline
two-stage algorithms consume less power compared to the other practical approaches, specially the
greedy uniform power allocation algorithm. This result is shown in Figure 7. As expected, the larger
the power demand, the higher the consumption cost, which affects negatively the profit.

3.2. Online two-stage charging algorithm

This section presents some simulation results to illustrate the performance of our online two-stage
charging algorithms in terms of the average total profit, average user satisfaction factor, and average
power allocation, where the average results are also taken over 100 random realizations. We also
present some results with regard to the competitive ratio to show the efficiency of our online two-stage
charging algorithms. In the following simulations, the number of charging machines is set as C = 10
and γmin is set to be 0, 0.5 or 0.7, respectively.

In Figure 10 and Figure 11, we show the average profit for both offline and online charging
scenarios. Notice that the offline two-stage algorithms provide a better profit as expected due to the
knowledge of future charging requests. Also, we observe that the profit obtained by the online
two-stage algorithms decreases as γmin increases. We can consider this number as a critical point to
decide which online strategy should be implemented in terms of system design and profit.

Furthermore, the average user satisfaction factor is shown in Figure 12 and Figure 13, where the
average is taken over both random realizations and different customers. The online LP and greedy
two-stage algorithms provide respectively about 60% and 75% (vs. 100% and 85%) of charging when
γmin = 0 (vs. γmin = 0.7). Notice that the user satisfaction factor increases as the value of γmin

increases, at the price of rejecting more customers. This information can be utilized to design an
online strategy to achieve certain QoS requirement based on the expected number of arriving users.
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Figure 10. Average profit of the online LP two-stage algorithm against its offline counterpart

Number of Users

5 10 15 20 25 30

A
v
er

ag
e 

P
ro

fi
t 

o
f 

th
e 

S
ta

ti
o
n
 (

$
)

-200

0

200

400

600

800
Offline Greedy with γ

min
=0

Offline Greedy with γ
min

=0.5

Offline Greedy with γ
min

=0.7

 Online Greedy with γ
min

=0

 Online Greedy with γ
min

=0.5

 Online Greedy with γ
min

=0.7

Figure 11. Average profit of the online greedy two-stage algorithm against its offline
counterpart.

We present the average power consumption in Figure 14 and Figure 15, where the average is taken
over both random realizations and time. Notice that both online algorithms provide a lower power
consumption compared with their offline counterparts. This is expected since the offline approach
utilize the future charging information to uniformly allocate the total sum of power in order to reduce
the power consumption cost.

Finally, we illustrate the competitive ratios for general cases. In Figure 16 and Figure 17, we show
the competitive ratios achieved under non-congested and congested environments, respectively. In the
non-congested case, the number of customers is small enough such that all EVs can be successfully
scheduled and charged on the available machines. Here, both the online LP and greedy algorithms
provide a competitive ratio of at least 88% (vs. 80%) when N = 30 and γmin is 0 (vs. 0.7). Notice
that, for any value of γmin, the competitive ratios achieved is greater than the lower bound obtained
in Theorem 2.8. Meanwhile, in the congested case, the number of customers is large and the number
of EVs rejected increases. Here, the online LP and greedy algorithms provide a competitive ratio of at
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Figure 12. Average user satisfaction factor of the online LP two-stage algorithm against its
offline counterpart.
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Figure 13. Average user satisfaction factor of the online greedy two-stage algorithm against
its offline counterpart.

least 55% and 25% (vs. 40% and 65%) when N = 30 and γmin is 0 (vs. 0.7), respectively. Notice again
that, for any value of γmin, the competitive ratios achieved is greater than the lower bounds presented
in Theorem 2.8.

4. Conclusion

In this paper, we studied a profit maximization framework for electric vehicle charging under
offline and online charging setups. Our algorithms achieve this goal by jointly optimizing EV
scheduling, charging power, and user satisfaction factors for multiple EVs, where customers are
guaranteed to be charged with at least γmin of the desired energy target. We showed that the profit
maximization problem is NP-complete for both cases, and proposed two-stage EV charging strategies
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Figure 14. Average power consumption of the online LP two-stage algorithm against its
offline counterpart.
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Figure 15. Average power consumption of the online greedy two-stage algorithm against its
offline counterpart.

to obtain some efficient suboptimal solutions. In the first stage, the station finds the best EV
scheduling that maximizes the total profit by using either the LP relaxation or the greedy algorithm
with fixed charging power and satisfaction factors. In the second stage, the station optimizes the
power allocation and the user satisfaction factors to maximize the total profit of the station, where the
forms of optimal solutions were derived. We also provided a competitive ratio analysis and
considered a special scenario to obtain a close-form competitive ratio achieved by our online
algorithms in non-congested and congested scenarios. Finally, simulation results were presented to
evaluate our two-stage algorithms by comparing with other charging approaches, and showed that our
strategies perform well with respect to the average total profit, average computational time, average
user satisfaction factor, average power allocation, and competitive ratio. We noticed that for both
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Figure 16. Average competitive ratio for general cases under non-congested scenarios.
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Figure 17. Average competitive ratio for general cases under congested scenarios.

offline and online cases the profit and the percentage of EVs serviced decrease as the value of γmin

increases, while the user satisfaction factor increases as the value of γmin increases.
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