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Abstract: Recently, Hoang and Egbelowo (Boletin de la Sociedad Matemàtica Mexicana, 2020)
proposed a nonstandard finite difference scheme (NSFD) to get a discrete SIR epidemic model with
saturated incidence rate and constant vaccination. The discrete model was derived by discretizing the
right-hand sides of the system locally and the first order derivative is approximated by the generalized
forward difference method but with a restrictive denominator function. Their analysis showed that the
NSFD scheme is dynamically-consistent only for relatively small time-step sizes. In this paper, we
propose and analyze an alternative NSFD scheme by applying nonlocal approximation and choosing
the denominator function such that the proposed scheme preserves the boundedness of solutions. It is
verified that the proposed discrete model is dynamically-consistent with the corresponding continuous
model for all time-step size. The analytical results have been confirmed by some numerical simulations.
We also show numerically that the proposed NSFD scheme is superior to the Euler method and the
NSFD method proposed by Hoang and Egbelowo (2020).
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1. Introduction

Over recent decades, mathematical models are considered as crucial tools for understanding the
transmission mechanism and evaluating the control strategies of infectious diseases, see [1–3]. In this
respect, Yusuf and Benyah [4] have introduced and analyzed a SIR epidemic model with constant
vaccination and treatment where the incidence rate is assumed to be bi-linear. The bi-linear incidence
rate describes that disease transmission is proportional to the number of susceptible individuals and
infective individuals, and so the greater the number of susceptible individuals and infective individuals
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cause an even greater transmission rate. Hence the bi-linear incidence rate is not realistic for cases
in a large population since there are changes in the social and psychological behavior of society or
some prevention measure taken by the society which reduce the transmission rates. To deal with
the crowding effect or behavioral change, Capasso and Serio [5] proposed a saturated incidence rate
βS I

1+αI where β is the maximal disease transmission rate and α is the saturation factor that measures the
inhibitory effect due to the crowding effect or behavioral change of society [6]. After that, the saturated
incidence rate has been widely applied to deterministic epidemic models [7–10], epidemic models with
optimal control [11–13] or stochastic epidemic models [14–16]. If the bilinear incidence rate in the
SIR epidemic model [4] is replaced by the saturated incidence rate, then we get

dS
dt

= Λ −
βS I

1 + αI
− (ν + µ)S

dI
dt

=
βS I

1 + αI
− (µ + γ + δ)I

dR
dt

= νS + γI − µR,

(1.1)

where S ≡ S (t), I ≡ I(t) and R ≡ R(t) denote the sub-population of susceptible, infective, and recovered
at time t, respectively. Λ, ν and γ are positive parameters which respectively represent the recruitment
rate of population, vaccination rate, and recovery rate due to treatment. The natural death rate and the
death rate induced by the disease are respectively denoted by µ and δ. It is assumed that initial values
are non-negativity: S (0) = S 0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0. Recently, the SIR model (1.1)
has been applied by Khan et al. [17] to model the spread of hepatitis B virus. The local and global
stability analysis of the disease free equilibrium (DFE) point were established, but the disease endemic
equilibrium (DEE) point was only studied locally. The global stability analysis of the DEE point of the
model was then provided by Hoang and Egbelowo [18]. Very recently, Macı̀as-Dı̀az et al. [19] studied
the diffusion effect on the spread of the hepatitis B virus.

The mathematical epidemic models are generally in the form of a nonlinear differential equations
system so that their analytical solutions are difficult to be obtained. Hence numerical approximations
are often needed to get reliable results. However, it was shown that many standard numerical methods
such as the Euler method, Runge-Kutta method, and other standard finite difference methods may fail
to maintain the dynamical properties of the corresponding continuous models, see e.g. [20–22]. To
overcome such dynamics-inconsistency, Mickens [23] has developed a nonstandard finite difference
(NSFD) method. A numerical scheme for a system of first-order differential equations is called an
NSFD scheme if at least one of the following conditions is satisfied.

• The first-order derivatives in the system are approximated by the generalized forward difference
method

dun

dt
≈

un+1 − un

φ
,

where un = u(tn) and φ ≡ φ(h) is the denominator function such that φ(h) = h +O(h2) and h is the
time-step size.
• The nonlinear terms are approximated non-locally. For example u2(tn) ≈ unun+1.

The NSFD method has been successfully implemented in various problems such as epidemiology
[24–30], ecology [28,31–33] or metapopulation model [34]. However, we notice that an NSFD scheme
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for a differential equation is not unique. Hence, the dynamical properties of an NSFD scheme need to
be analyzed to ensure whether an NSFD scheme maintains the dynamics-consistency with its original
continuous equation or not. NSFD schemes in [27, 28, 31–33] did not apply the generalized forward
difference method but they used nonlocal approximation. Moreover, the authors in those references
did not consider the population conservation law. Their dynamical analysis shows that the NSFD
schemes in [27, 31, 32] maintain the stability properties of all existing equilibrium points irrespective
of the time-step size (h). However, the NSFD schemes in [28, 33] require a relatively small h for the
stability of equilibrium points. Cui et al. [24–26] and the authors in [29, 30] applied both generalized
forward difference method and nonlocal approximation. They have proven that the obtained NSFD
schemes preserve all dynamical properties of the corresponding continuous models irrespective of h.
In particular, the denominator function must be appropriately chosen to satisfy the exact population
conservation law.

Recently, Hoang and Egbelowo [18] proposed a numerical scheme for the model (1.1) to get the
following discrete model

S n+1 − S n

φ
= Λ −

βS nIn

1 + αIn
− (µ + ν)S n

In+1 − In

φ
=

βS nIn

1 + αIn
− (µ + γ + δ)In

Rn+1 − Rn

φ
= νS n + γIn − µRn,

(1.2)

where φ is any denominator function but it must obey φ ≡ φ(h) = h + O(h2). Notice that the NSFD
scheme (1.2) implements the generalized forward method and a local approximation for the right-hand
sides. Rigorous investigation on the dynamical properties shows that the discrete model (1.2) preserves
the dynamics-consistency of the model (1.1) only if the denominator function satisfies φ(h) < φ∗, where
φ∗ is a critical value of the denominator function which is determined by some parameters in the model
(1.1). Hence, the preservation of dynamics-consistency is achieved only when the time-step size is
relatively small.

In this paper, we propose an alternative NSFD scheme for the model (1.1) which is dynamically-
consistent with the original continuous model for any time-step size. Following Cui et al. [24–26, 29,
30], we apply both the generalized forward difference method and nonlocal approximation to construct
the NSFD scheme. We organize the rest of the paper as follows. In Section 2 we review the dynamical
properties of model (1.1) based on the analytical results in [17, 18]. The derivation of the NSFD
scheme for model (1.1) is presented in Section 3. We show in this section that the obtained discrete
NSFD model has the same dynamical properties as the corresponding continuous model. To illustrate
our analytical findings, we present numerical simulations in Section 4. We draw some conclusions in
the final section.

2. Dynamics of the continuous epidemic model

As for other models of population dynamics, the SIR epidemic model with a saturated incidence
rate (1.1) is required to have positive and bounded solutions. The positivity of the solution of model
(1.1) has been proven in [17] and is stated in the following theorem.
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Theorem 1. [17] If the solution of the SIR epidemic model (1.1) subject to non-negative initial values
exist, then it is positive ∀t > 0.

The boundedness of the solution is related to limited resources so that the population cannot grow
infinitely. Hence, the boundedness of the solution of model (1.1) is biologically important but it has
not been described in [17, 18]. In the following theorem, we establish the boundedness of solution for
the model (1.1).

Theorem 2. The solution of the SIR epidemic model (1.1) subject to non-negative initial values is
ultimately bounded.

Proof. Let P(t) = S (t) + I(t) + R(t) be the total population. From model (1.1) we have

dP
dt

= Λ − µP − δI ≤ Λ − µP, (2.1)

from which we get

P(t) ≤
Λ

µ
+

(
P0 −

Λ

µ

)
exp(−µt), (2.2)

where P0 = S 0 + I0 + R0. It is clear that limt→+∞ P(t) ≤ Λ
µ

, and thus S (t), I(t) and R(t) are ultimately
bounded. �

From Theorem 1 and Theorem 2, we see that model (1.1) has a feasible region

Ω = {(S , I,R) : 0 ≤ S + I + R ≤
Λ

µ
, S ≥ 0, I ≥ 0,R ≥ 0},

which is positively invariant. Therefore, the SIR epidemic model (1.1) is mathematically and
epidemiologically well posed in Ω.

Using the next generation matrix method, Khan et al. [17] derived the basic reproduction number
for model (1.1), namely

R0 =
Λβ

(µ + ν)(µ + γ + δ)
. (2.3)

It was also shown in [17] that model (1.1) always has a DFE point E0 =
(
S 0, 0,R0

)
, where S 0 = Λ

µ+ν

and R0 = Λν
µ(µ+ν) . In addition to the DFE point, if R0 > 1, then model (1.1) also has a DEE point

E∗ = (S ∗, I∗,R∗) where S ∗ =
αΛ+(µ+γ+δ)
α(µ+ν)+β , I∗ =

(µ+ν)(R0−1)
α(µ+ν)+β and R∗ =

νS ∗+γI∗

µ
. The following theorem about

the stability of the DFE and DEE points are taken from [17, 18].

Theorem 3. [17]

1. The DFE point of model (1.1) is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.
2. The DEE point of model (1.1) is locally asymptotically stable if R0 > 1.

Theorem 4. [18]

1. The DFE point of model (1.1) is globally asymptotically stable if R0 ≤ 1.
2. The DEE point of model (1.1) is globally asymptotically stable if R0 > 1.
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3. Dynamically-consistent NSFD discretization of the SIR epidemic model with saturated
incidence rate and vaccination

3.1. Construction of the NSFD scheme

For the rest of this paper, we respectively denote S n, In and Rn as the numerical approximation of
S (t), I(t) and R(t) at t = nh, n = 0, 1, 2, ..., where h is the time-step size. Using the idea of Mickens [23],
we discretize model (1.1) as follows

S n+1 − S n

φ
= Λ −

βS n+1In

1 + αIn
− (µ + ν)S n+1

In+1 − In

φ
=

βS n+1In

1 + αIn
− (µ + γ + δ)In+1

Rn+1 − Rn

φ
= νS n+1 + γIn+1 − µRn+1.

(3.1)

The initial values of the discrete NSFD SIR epidemic model (3.1) are also supposed to be non-
negative: S 0 ≥ 0, I0 ≥ 0 and R0 ≥ 0. Different from the scheme (1.2), the NSFD scheme (3.1)
approximates the nonlinear terms in the right-hand sides nonlocally. Furthermore, the denominator
function φ in (3.1) is not arbitrary, but it will be derived such that it obeys the exact boundedness of
solutions. To do so, we denote the total population as Pn = S n + In + Rn. From the discrete NSFD
model (3.1), we have

Pn+1 − Pn

φ
= Λ − µPn+1 − δIn+1 ≤ Λ − µPn+1. (3.2)

By straightforward calculations, it is easy to verify that if we take a denominator function

φ =
exp(µh) − 1

µ
, (3.3)

then the solution of equation (3.2) satisfies

Pn ≤
Λ

µ
+

(
P0 −

Λ

µ

)
exp(−µnh), (3.4)

for any h > 0. Additionally, for the case of δ = 0, we can also show that the total population of the
discrete NSFD model (3.1) are exactly the same as that of model (1.1). Hence, the discrete NSFD
model (3.1) maintains the exact boundedness of solutions (2.2). The discrete NSFD model (3.1) can
be rearranged to get explicit form

S n+1 =
S n + φΛ

1 + φ (µ + ν + Ψn)

In+1 =
In + φΨnS n+1

1 + φ (µ + γ + δ)

Rn+1 =
Rn + φ (νS n+1 + γIn+1)

1 + φµ
,

(3.5)
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where Ψ(z) =
βz

1+αz and Ψn = Ψ(In). Since all parameters in (3.5) are positive, it is proven that S n ≥

0, In ≥ 0 and Rn ≥ 0 for all n > 0 and for any h > 0. This finding confirms the discrete NSFD model
(3.5) preserves the non-negativity solutions for any h.

By applying some algebraic calculations, we can easily verify that the discrete NSFD model (3.5)
has exactly the same equilibrium points as continuous model (1.1), namely the DFE point
E0 = (S 0, 0,R0) and the DEE point E∗ = (S ∗, I∗,R∗). The DEE point E∗ exists if R0 > 1. The local
and global stability of equilibrium point E0 and E∗ are investigated in the following Subsections.

3.2. Local stability analysis of the discrete NSFD model

By noticing that the first two equations in the discrete NSFD model (3.5) do not depend on the third
equation, the stability analysis can be performed by considering the following reduced model

S n+1 =
S n + φΛ

1 + φ (µ + ν + Ψn)
= F1(S , I)

In+1 =
In + φΨnS n+1

1 + φ (µ + γ + δ)
= F2(S , I).

(3.6)

The Jacobian matrix of the discrete NSFD model (3.6) at a point Ē = (S̄ , Ī) is given by

J(S̄ , Ī) =

(
∂F1
∂S (S̄ , Ī) ∂F1

∂I (S̄ , Ī)
∂F2
∂S (S̄ , Ī) ∂F2

∂I (S̄ , Ī)

)
. (3.7)

By observing the eigenvalues of the Jacobian matrix J(S̄ , Ī), we study the local stability of equilibrium
points as in the following theorems.

Theorem 5. If R0 < 1, then the DFE point E0 of the discrete NSFD model (3.6) is locally
asymptotically stable for all h > 0. Furthermore, if R0 > 1 then E0 is unstable for all h > 0.

Proof. If we substitute the DFE point E0 into the Jacobian matrix (3.7), the we get

J(E0) =

 1
1+φ(µ+ν) −

φβ(S 0+φΛ)
(1+φ(µ+ν))2

0 µ+ν+φΛβ

µ+ν+φ(µ+ν)(µ+γ+δ)

 . (3.8)

The eigenvalues of J(E0) are obviously

0 < λ1 =
1

1 + φ(µ + ν)
< 1 and λ2 =

µ + ν + φΛβ

µ + ν + φ(µ + ν)(µ + γ + δ)
.

Clearly that if R0 < 1 then 0 < λ2 < 1, while if R0 > 1 then λ2 > 1. This fact confirms that if R0 < 1
then the DFE E0 is locally asymptotically stable and it is unstable if R0 > 1, irrespective of h. �

To prove the local stability of DEE E∗, we need the following Schur-Cohn criterion [1, 35].

Lemma 6. [1,35] The roots of quadratic equation λ2 − Tλ+ D = 0 satisfy |λi| < 1, i = 1, 2 if and only
if all of the following conditions are fulfilled:

1. D < 1,
2. 1 + T + D > 0,
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3. 1 − T + D > 0.

Theorem 7. If R0 > 1, then the DEE point E∗ of the discrete NSFD model (3.6) is locally
asymptotically stable for all h > 0.

Proof. The Jacobian matrix (3.7) evaluated at the DEE point E∗ is

J(E∗) =

 1
a1

−
a4
a2

1
a3

a1a2

1
a2

1a2
(a2

1 + a4(a1 − a3))

 (3.9)

where a1 = 1 + φ(Ψ∗ + µ + ν) > 1, a2 = 1 + φ(µ + γ + δ) > 1, a3 = φΨ∗ > 0 and a4 =
φβ(S ∗+φΛ)

(1+αI∗)2 > 0.
The eigenvalues of J(E∗) is determined by the following quadratic equation

λ2 − Tλ + D = 0, (3.10)

where T = Trace (J(E∗)) = 1
a1

+ 1
a2

1a2
(a2

1 + a4(a1 − a3)) and D = Determinant (J(E∗)) = a1+a4
a2

1a2
. Since

a1 > a3, it is apparently that T > 0 and D > 0. We also have the following results.

1. Due to a1 > 1, we get
D = a1+a4

a2
1a2

= 1
a1a2

+ a4
a2

1a2
< 1+a4

a1a2

=
S ∗+ φS ∗(µ+γ+δ)

1+αI∗ +
φ2Λ(µ+γ+δ)

(1+αI∗)

(S ∗+φΛ)(1+φ(µ+γ+δ))

≤
S ∗+φS ∗(µ+γ+δ)+φ2Λ(µ+γ+δ)

S ∗+φS ∗(µ+γ+δ)+φ2Λ(µ+γ+δ)+φΛ

< 1.

2. It is obvious that 1 + T + D > 0.
3. Straightforward calculations show that if R0 > 1 then

1 − T + D =
φ2(µ+γ+δ)2(µ+ν)

a2
1a2βS ∗

(
1 +

φΛ

S ∗

)
[R0 − 1] > 0.

Hence, the conditions for the Schur-Cohn criterion in Lemma 6 are satisfied whenever R0 > 1. It is
concluded that the DEE point E∗ is locally asymptotically stable if R0 > 1 for any h. �

3.3. Global stability analysis of the discrete NSFD model

This Subsection is devoted to establish the sufficient conditions for the global stability of
equilibrium points of the discrete NSFD model (3.6).

Theorem 8. If R0 ≤ 1, then the disease free equilibrium point E0 of the discrete NSFD model (3.6) is
globally asymtotically stable for all h > 0.

Proof. We first introduce a discrete Lyapunov function

Un =
1
φ

(
S 0ϕ

(S n

S 0

)
+ In

)
+ S 0Ψn, (3.11)
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where ϕ(z) = z − 1 − ln(z) ≥ ϕ(1) = 0. Based on the first two equations of (3.1) we obtain

∆Un = 1
φ

[
S 0

(
ϕ
(

S n+1
S 0

)
− ϕ

(
S n
S 0

))
+ (In+1 − In)

]
+ S 0 (Ψn+1 − Ψn)

= 1
φ

[
S n+1 − S n + S 0 ln

(
S n

S n+1

)]
+ ΨnS n+1 − (µ + γ + δ)In+1 + S 0 (Ψn+1 − Ψn)

≤ − 1
S n+1

(
S n+1 − S 0

) (
S n+1−S n

φ

)
+ ΨnS n+1 − (µ + γ + δ)In+1 + S 0 (Ψn+1 − Ψn)

= − 1
S n+1

(
S n+1 − S 0

)
(Λ − ΨnS n+1 − (µ + ν)S n+1) + ΨnS n+1 − (µ + γ + δ)In+1

+S 0 (Ψn+1 − Ψn)

= −
(µ+ν)
S n+1

(
S n+1 − S 0

)2
+ S 0Ψn+1 − (µ + γ + δ)In+1

= −
(µ+ν)
S n+1

(
S n+1 − S 0

)2
− (µ + γ + δ)In+1 +

Λβ

(µ+ν)(1+αIn+1) In+1

= −
(µ+ν)
S n+1

(
S n+1 − S 0

)2
− (µ + γ + δ)

(
1 − Λβ

(µ+ν)(µ+γ+δ)(1+αIn+1)

)
In+1

= −
(µ+ν)
S n+1

(
S n+1 − S 0

)2
− (µ + γ + δ)

(
1 − R0

1+αIn+1

)
In+1.

Obviously that if R0 ≤ 1, then Un+1 − Un ≤ 0 for all n ≥ 0, which shows Un is monotone
decreasing sequence. Since Un ≥ 0, there exists a limn→∞Un ≥ 0 and thus limn→∞ (Un+1 −Un) = 0.
Consequently we have limn→∞ S n+1 = S 0 and limn→∞

(
1 − R0

1+αIn+1

)
In+1 = 0 for any h. It is

straightforward to show that if R0 ≤ 1 then limn→∞ In+1 = 0. This completes the proof. �

In the following theorem we show that E∗ is globally asymtotically stable if it exists.

Theorem 9. If R0 > 1, then the DEE point E∗ of the discrete NSFD model (3.6) is globally
asymptotically stable for all h > 0.

Proof. To establish the sufficient condition for which E∗ is globally stable, we apply the approach of
Enatsu et al. [36]. Here we define the following discrete Lyapunov function

Wn = S ∗ϕ
(S n

S ∗

)
+ I∗ϕ

( In

I∗

)
+ φΨ∗S ∗ϕ

(
Ψn

Ψ∗

)
, (3.12)

where Ψ∗ = Ψ(I∗) and ϕ(z) is defined as in the proof of Theorem 8. By substituting the first two
equations in (3.1) into equation (3.12), we obtain

∆Wn = Wn+1 −Wn

= S ∗
(
ϕ
(

S n+1
S ∗

)
− ϕ

(
S n
S ∗

))
+ I∗

(
ϕ
(

In+1
I∗

)
− ϕ

(
In
I∗

))
+ φΨ∗S ∗

(
ϕ
(

Ψn+1
Ψ∗

)
− ϕ

(
Ψn
Ψ∗

))
= S n+1 − S n + S ∗ ln

(
S n

S n+1

)
+ In+1 − In + I∗ ln

(
In

In+1

)
+φΨ∗S ∗

(
Ψn+1
Ψ∗
−

Ψn
Ψ∗
− ln

(
Ψn+1
Ψ∗

)
+ ln

(
Ψn
Ψ∗

))
≤ 1

S n+1
(S n+1 − S ∗) (S n+1 − S n) + 1

In+1
(In+1 − I∗) (In+1 − In)

+φΨ∗S ∗
(

Ψn+1
Ψ∗
−

Ψn
Ψ∗
− ln

(
Ψn+1
Ψ∗

)
+ ln

(
Ψn
Ψ∗

))
=

φ

S n+1
(S n+1 − S ∗) (Λ − ΨnS n+1 − (µ + ν)S n+1)

+
φ

In+1
(In+1 − I∗) (ΨnS n+1 − (µ + γ + δ)In+1)

+φΨ∗S ∗
(

Ψn+1
Ψ∗
−

Ψn
Ψ∗
− ln

(
Ψn+1
Ψ∗

)
+ ln

(
Ψn
Ψ∗

))
= −

φ(µ+ν)
S n+1

(S n+1 − S ∗)2 + φΨ∗S ∗
(
1 − S ∗

S n+1

) (
1 − Ψn

Ψ∗
S n+1
S ∗

)
+φΨ∗S ∗

(
1 − I∗

In+1

) (
Ψn
Ψ∗

S n+1
S ∗ −

In+1
I∗

)
+φΨ∗S ∗

(
Ψn+1
Ψ∗
−

Ψn
Ψ∗
− ln

(
Ψn+1
Ψ∗

)
+ ln

(
Ψn
Ψ∗

))
.

(3.13)
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By denoting χn = S n
S ∗ , ξn = In

I∗ and ζn = Ψn
Ψ∗

, equation (3.13) can be written as

∆Wn ≤ −
φ(µ+ν)S ∗

χn+1
(χn+1 − 1)2 + φΨ∗S ∗

(
1 − 1

χn+1

)
(1 − ζnχn+1)

+φΨ∗S ∗
(
1 − 1

ξn+1

)
(ζnχn+1 − ξn+1) + φΨ∗S ∗ (ζn+1 − ζn − ln ζn+1 + ln ζn)

= −
φ(µ+ν)S ∗

χn+1
(χn+1 − 1)2

− ϕ
(

1
χn+1

)
− ϕ

(
χn+1ζn
ξn+1

)
+ φΨ∗S ∗ (ϕ (ζn+1) − ϕ (ξn+1)) .

(3.14)

By definition of ϕ(z), we can verify that

ϕ (ζn+1) − ϕ (ξn+1) = Ψn+1
Ψ∗
−

In+1
I∗ + ln

(
In+1
I∗

Ψ∗

Ψn+1

)
≤

Ψn+1
Ψ∗
−

In+1
I∗ + In+1

I∗
Ψ∗

Ψn+1
− 1

= −
α(In+1−I∗)2

I∗(1+αI∗)(1+αIn+1)
≤ 0.

(3.15)

Therefore Wn is monotone decreasing sequence. Using the same argument as in the proof of
Theorem 8 we can show that limn→∞ (Wn+1 −Wn) = 0, from which we get limn→∞ S n+1 = S ∗ and
limn→∞ In+1 = I∗ for all h. Hence, we have the theorem. �

4. Numerical simulations

To give better view of the previous analytical results, we present some numerical simulations using
the proposed discrete NSFD model (3.5). For the simulations, we take initial value
S (0) = 4, I(0) = 0.2, and hypothetical parameters: Λ = 4, µ = 0.5, β = 0.5, α = 0.01, γ = 0.1, ν = 0.2,
and δ = 0.1. By calculation, the basic reproduction number is R0 = 4.0816 > 1. The equilibrium
points of both continuous model (1.1) and discrete NSFD model (3.5) are exactly the same, namely
the unstable DFE point E0 = (5.7143, 0.0, 2.2857) and the globally asymptotically stable DEE point
E∗ = (1.4590, 4.2547, 1.4348). In Figure 1 we compare the solutions of the proposed discrete NSFD
model (3.5) with those of the explicit Euler method using h = 1 and h = 1.35. It is shown that the
explicit Euler method produces a periodic solution of period two for the case of h = 1 and a chaotic
behavior for h = 1.35. In contrast to the explicit Euler method, the solutions of the proposed NSFD
scheme (3.5) are convergent to the correct equilibrium point E∗ for both h = 1 and h = 1.35. The
complete dynamical behavior of the numerical results of the proposed discrete NSFD model (3.5) and
the explicit Euler method with respect to h can be seen in Figure 2. Figure 2.(a–b) indicates that there
exists a critical time-step size h∗ such that the solution obtained by the explicit Euler method is
convergent to the stable DEE point E∗ if h < h∗. For larger time-step size, the solution may converge
to a stable periodic solution of period two or that of period four, or even exhibits a chaotic behavior.
On the contrary, the solutions obtained by the proposed NSFD scheme (3.5) are always convergent to
the DEE point E∗ for any h, see Figure 2.(c–d). These numerical simulations confirm that the
dynamics of the discrete model obtained by the explicit Euler method are dependent on the time-step
size, while the dynamics of the proposed discrete NSFD model (3.5) are independent of h.
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Figure 1. Numerical solutions of the SIR epidemic model (1.1) obtained by the explicit Euler
method with (a) h = 1 and (b) h = 1.35; and by the proposed NSFD method (3.5) with (c)
h = 1 and (d) h = 1.35.
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Figure 2. Bifurcation diagram in (h, S )−plane and (h, I)− plane for the discrete SIR epidemic
model with Λ = 4, µ = 0.5, β = 0.5, α = 0.01, γ = 0.1, ν = 0.2, and δ = 0.1 obtained by (a–b)
the explicit Euler method, and (c–d) the proposed NSFD method (3.5).

Next, using the same parameter values as before, we compare the numerical solutions obtained by
the NSFD scheme (1.2) [18] and our proposed NSFD scheme (3.5), see Figure 3. Here, the
denominator function for the NSFD scheme (1.2) is φ =

1−exp(µh)
µ

. As stated in the Introduction, the
NSFD scheme proposed in [18] is dynamically consistent only for restrictive time-step size. Indeed,
according to the analytical results in [18], the NSFD scheme (1.2) is dynamically-consistent if
φ∗ < 0.9486 which is equivalent to h < 1.2860. Figure 3 confirms this phenomenon. If we take
h = 1.5 then the numerical solution obtained by the NSFD scheme (1.2) does not converge to the DEE
point but it goes to a periodic solution of period two, see Figure 3.(a). If we further increase the
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time-step size (h = 2) then we get a chaotic solution, see Figure 3.(b). On the other hand, the
proposed NSFD scheme (3.5) preserves the stability of the DEE point, even for relatively large h, see
Figure 3.(c–d).
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Figure 3. Numerical solutions of the SIR epidemic model (1.1) obtained by the NSFD
scheme (1.2) and the proposed NSFD scheme (3.5).

Finally, we perform simulation using parameters
Λ = 1, µ = 0.5, β = 0.25, α = 0.01, γ = 0.1, ν = 0.2, δ = 0.1, and time step size h = 0.1 with initial
value S (0) = 6 and I(0) = 1. The reproduction number in this case is R0 = 0.5102 < 1. Hence, the
DFE point E0 = (1.4286, 0.0, 0.5714) is asymptotically stable while the DEE point does not exist. The
solution obtained by the proposed NSFD scheme (3.5) confirms the stability of the DFE point, see
Figure 4.(a). For comparison, we also plot the numerical solutions obtained by the ordinary
differential equations (ODE) solvers in MATLAB, namely ode23s (the 2nd order modified
Rosenbrock), ode23t (the trapezoidal rule using a “free” interpolant) and ode45 (the Runge-Kutta
Dormand-Prince method of order (4,5)) with their default tolerance. The y–axis (susceptible and
infective sub-populations) in this figure is plotted in the logarithmic scale. Notice that the logarithmic
function log(y) is defined only for y > 0. Hence, if the solution (susceptible or infective
sub-population) is negative then the figure cannot be plotted (it is ignored by MATLAB). Figure 4.(a)
shows that the solution given by the proposed NSFD scheme is convergent to the DFE point and is
positive for all t. We observe in Figure 4.(b-d) that solutions obtained by all three MATLAB ODE
solvers go to the DFE point but the infective subpopulation I(t) is discontinuous at some points,
showing that all three MATLAB ODE solvers produce unrealistic negative solutions. Although the
tolerances of MATLAB ODE solvers are reduced such that AbsTol = 10−12 and RelTol = 10−12, we
still observe that the three MATLAB ODE solvers produce unrealistic negative solutions.
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Figure 4. Numerical solutions of the SIR epidemic model (1.1) obtained by the proposed
NSFD scheme (3.5) and three ODE solvers in MATLAB (ode23s, ode23t and ode45).

5. Conclusions

In this article we have proposed and analyzed a dynamically-consistent discrete SIR epidemic
model with saturated incidence rate and vaccination. The discrete model is constructed using the
NSFD method. In contrast to the discrete NSFD model available in literature, we constructed the
discrete NSFD model by applying a nonlocal approximation for the nonlinear terms and choose a
suitable denominator function. The denominator function is derived in such away that the NSFD
scheme satisfies the exact boundedness of solutions. The existence conditions of all equilibrium
points of the proposed discrete NSFD model are derived and the sufficient conditions for which the
equilibrium points are locally and globally stable have also been established. We have shown that the
proposed discrete NSFD model has exactly the same dynamics as those of continuous model
irrespective of the time-step size. These qualitative properties have been confirmed by our numerical
simulations. Furthermore, our numerical simulations showed that the discrete model obtained by the
explicit Euler method and the NSFD scheme proposed in other literatur is dynamically-consistent
with the related continuous model only when the time-step size is relatively small. The three
MATLAB ODE solvers (ode23s, ode23t, ode45) may fail to produce realistic solutions, i.e., the
solutions may be negative.
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