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Abstract: The purpose of this paper is to introducing a computational method to construction
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a mathematical method to produce hyperfields from a family of a non-empty subsets of a given
multiplicative group under specific conditions and then we apply this method to enumerate all finite
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1. Introduction

As it is well known theory of hyperstructures (also known as multialgebras) was introduced in
1934 at the “8th congress of Scandinavian Mathematicians”, where a French mathematician Marty [1]
presented some definitions and results on the hypergroup theory, which is a generalization of groups.
He gave applications of hyperstructures to rational functions, algebraic functions and non-
commutative groups. Hyperstructure theory is an extension of the classical algebraic structure. In
algebraic hyperstructures, the composition of two elements is a set, while in a classical algebraic
structure, the composition of two elements is an element. Algebraic hyperstructure theory has many
applications in other disciplines. Over the years hypercompositional structures have been used in
algebra, geometry, convexity, automata theory and even in some applied sciences (for more details see
[2–11]). Hyperring and hyperfield theory first was introduced and studied by M. Krasner in [12, 13].
He used a field and a subgroup of its multiplicative group for making a hyperstructure named
hyperfield. Then this hyperstructure was studied and extended by other researchers (e.g. [14–19]). As
in a hyperstructure the operation result for two elements could be multi valued Then associated a
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projective space to every finite commutative extension of K hyperfield. Hyperfield structure at first
was introduced as a quotient structure but based on its definition Ch. G. Massouros [14] proved that
there is non-quotient structure of a hyperfield. Thus if we desire to have hyperfield structure to be as
introduced by Krasner we need to reintroduce Krasner hyperfield whit more conditions. By field
theory studies and achievements one can find many results about this structure(quotient hyperfield).
In [20] A. Connes and C. Consani introduced K-extension hyperfield and K-vector space and stated
some properties for Krasner hyperfields. In their research they find isomorphism relation between
Krasner hyperfields extension of K and projective space with at least 4 on each line which some of
them are isomorphic to non-quotient Krasner hyperfield extensions of K.

As well more hyperfields introduced like infinite hyperfields and tropical hyperfields [16] which
some of them are non-quotient types too. So this structure is applicable as is defined. In this way
hyperfield theory was introduced as a field of study in hyperstructure theory. Basic Studies and results
about this structure as there exist non-quotient types of it, is not in a way that one can describe and
classify all hyperfields. Throughout the studies of hyperfield theory various manners of constructing a
hyperfield have been issued [21]. It is not clear all hyperfields can be constructed by these manners.
So we were interested in to find all hyperfields for a given number of elements. As a hyperfields a
hyperstructure and the out put of an sum operation of two members is a set, so for verify some
properties or relations one has to study it by primitive approaches. For instance for a given
hypergroupoid if we want to check associativity property we have to verify for every triple (a, b, c) of
elements of the hypergroupoid.

Also, in researches [22–27] one can looking for a certain ways to come across, algorithms,
mathematical softwares and computer programming.

The purpose of this paper is to introduce a method to construct finite hyperfields. In this regards,
we briefly introduce some new themes in hyperfield theory and then we bring some results to show
that new results achieved from them. At the end we introduce a mathematical method and a computer
programming to construct finite hyperfields and classify them up to isomorphism. In particular, we use
this program and present all finite hyperfields of order less than 7, up to isomorphism. Of course, our
computer program has capacity to compute and classify all finite hyperfields, but for the complexity of
computation, it need to use very high-speed computers system.

2. Preliminaries

In this section, we review some definitions and results, which we need to development our paper.
For more details see e.g. [28–31].

Let H be a nonempty set and P∗(H) denotes the family of all nonempty subsets of H.
Ahyperoperation(or hypercomposition) on H is a function

◦ : H × H −→ P∗(H).

For all x, y of H, x ◦ y) is called a hyperproduct or a hypercomposition of x and y, sometimes we write
xy instead x ◦ y). A hyperstructure is a nonempty set together a family of finatary hyperoperation. A
hyperstructure (H, ◦) endowed with only a (binary) hyperoperation ◦ is called a hypergroupoid. The
hyperoperation is extended to subsets of H in a natural way, so that A ◦ B is given by

A ◦ B =
⋃
{a ◦ b : a ∈ A and b ∈ B }.
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The notations a ◦ A and A ◦ a are used for {a} ◦ A and A ◦ {a} respectively. Generally, the singleton
{a} is identified by its element a.

Also, a hypergroupoid (H, ·) is called a semihypergroup if for any x, y, z ∈ H, (x · y) · z = x · (y · z),
and a semihypergroup (H, ·) is called a hypergroup if satisfies in the reproduction axiom, i.e. for any
x ∈ H, x · H = H · x = H. Also, we identify every singleton {x} with it’s element x.

Definition 2.1. [32, Def. 3.1.1] A hyperring is an algebraic hyperstructure (R,+, .) which satisfies:
(i) (R,+) is a canonical hypergroup(or abelian hypergroup), i.e.:

• for every x, y, z ∈ R, x + (y + z) = (x + y) + z;
• for every x, y ∈ R, x + y = y + x;
• there exists an element 0 ∈ R, such that 0 + x = x,∀x ∈ R;
• for every x ∈ R there exist a unique element x

′

∈ R, such that 0 ∈ x + x
′

(we write −x for x
′

);
• z ∈ x + y implies y ∈ z − x and x ∈ z − y.

(ii) (R, .) is a semigroup having zero as a bilaterally absorbing element, i.e., x.0 = 0.x = 0.
(iii) the multiplication is distributive with respect to the hyperoperation +, i.e. x.(y + z) = x.y + x.z

and (y + z).x = y.x + z.x, for all x, y, z ∈ R.

Definition 2.2. [31, 32] A hyperfield is a hyperring which (R�{0}, .) is a group.

3. Krasner hyperfields and theirs extensions

The next result give a characterization of hyperfield extensions of K.

Example 3.1 (Krasner hyperfield). The Krasner hyperfield K is the hyperfield

({0, 1},+, .),

with additive neutral element 0, usual multiplication with identity 1, and satisfying the hyperoperation

1 + 1 = {0, 1}.

In the category of hyperrings, K can be seen as the natural extension of the commutative pointed
monoid F1, that is (K, .) = F1.

Remark 3.2. (Krasner and F1). In the category of hyperrings, K can be seen as the natural extension
of the commutative pointed monoid F1, that is, (K, .) = F1. As remarked in [33], the Krasner hyperfield
encodes the arithmetic of zero and nonzero numbers, just as F2 does for even and odd numbers.

Definition 3.3. [20] Let (H,+) be a (canonical) hypergroup and x ∈ H. The set

O(x) = {r ∈ Z|∃n ∈ Z : 0 ∈ rx + n(x − x)}

is a subgroup of Z. We say that the order of x is infinite (i.e. o(x) = ∞) if O(x) = {0}. If o(x) , ∞, the
smallest positive generator h of O(x) is called the principal order of x (cf. [[7], Definition 57]). Let
q = min{s ∈ N|∃m , 0, 0 ∈ mhx + s(x − x)}. The couple (h, q) is then called the order of x.

AIMS Mathematics Volume 5, Issue 6, 6552–6579.



6555

Example 3.4 (Sign hyperfield). We let S be the hyperfield S = {−1, 0, 1} with the hyperaddition given
by the rule of signs 1 + 1 = 1,−1 − 1 = −1, 1 − 1 = −1 + 1 = {−1, 0, 1} and the usual multiplication
also given by the rule of multiplication of signs.

One can sees that the monoid underlying S is F12 , i.e. (S, .) = F12 , where the order of the element
1 ∈ S is the pair (1, 1). The homomorphism absolute value π : S → K, f (x) = |x| is an epimorphism
of hyperrings. Given a hyperring R and a subset S ⊆ R containing 0 and 1 and such that for any x, y ∈ S
one has xy ∈ S , x − y ⊆ S , the subset S is a hyperring with the induced operations. This suggests the
following definition of an extension.

Definition 3.5. [20] (Homomorphism of hyperrings) Let R and S be two hyperrings. A map f : R −→
S is called a (strict) homomorphism if

1. ∀a, b ∈ R, f (a + b) ⊆ f (a) + f (b)( f (a + b) = f (a) + f (b))
2. ∀a, b ∈ R, f (ab) = f (a) f (b)

Definition 3.6. [20] A map f is said to be an isomorphism if it is a bijective strict homomorphism.

Definition 3.7. [20, Def. 2.3] Let R1 ⊆ R2 be hyperrings, we say that R2 is an extension of R1 when the
inclusion R1 ⊂ R2 is a strict homomorphism.

Note that this is a stronger requirement than simply asking the inclusion R1 ⊆ R2 to be a
homomorphism. It implies that for x, y ∈ R1 the sum x + y is the same when computed in R1 or in R2.
To become familiar with the operations in hyperstructures, see the following simple results.

Proposition 3.8. [20] In a hyperring extension R of the Krasner hyperfield K one has x + x = {0, x}
for any x ∈ R and moreover

a ∈ a + b ⇔ b ∈ {0, a}.

In particular, there is no hyperfield extension of K of cardinality 3 or 4.

Remark 3.9. The same proof shows that in a hyperring extension R of the hyperfield S one has

a ∈ a + b ⇔ b ∈ {0, a,−a}.

Krasner gave in [12] a construction of a hyperring as the quotient of a ring R by a multiplicative
subgroup G of the group R× of the invertible elements of R. This result states as follows:

Example 3.10. Consider (R,+, ·) a ring with identity, G a normal subgroup of multiplicative semigroup
(R×, ·) and take R̄ = R/G = {aG|a ∈ R} with the hyperaddition and multiplication given by:aG ⊕ bG = {cG|c ∈ aG + bG}

aG � bG = abG.
Then (R,⊕,�) is a hyperring, which is called a quotient hyperring.

Remark 3.11. Note that in above example the normal condition for G is not necessary, since Massouros
in [34] generalized this construction using for no normal multiplicative subgroups, since he proved
that in a ring there exist multiplicative subgroups G of multiplicative semigroup (R, .) which satisfy the
property xGyG = xyG, even though they are not normal.
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Remark 3.12. In the above definition we replace R by any field F, then (F̄,⊕,�) is a hyperfield,
which is a quotient hyperfield. Note that a hyperring(resp. hyperfield) S is said to be quotientable
hyperring(resp. hyperfield) if S isomorphic to R̄ as above. In [34] Massouros prove that there exists
non-quotientable hyperring.

One of important classes of quotient hyperfield is introduce in the following example.

Example 3.13. Let R be the finite field Fqm , where q is a prime power and m is a positive integer,
and let G be the multiplicative group Fqm , and hence Fq

× ≤ Fqm . Then we can see R naturally as
an m-dimensional Fq-vector space, or better: as an (m − 1)-dimensional Fq-projective space. In the
latter case, projective points are the cosets xG with x , 0. And lines, for instance, are of the form
(xG + yG)/G. Once one lets m go to 1, one naturally constructs the Krasner hyperfield K. These
examples will be very important in what is to come.

Example 3.14. This simple example is an application of the above results and it shows that there exists
a hyperfield extension of K of cardinality 5. Let H be the union of 0 with the powers of α, α4 = 1. It is
a set with 5 elements and the table of hyper-addition in H is given by the following matrix

0 1 α α2 α3

1 {0, 1} {α2, α3} {α, α3} {α, α2}

α2 {α, α3} {1, α3} {0, α2} {1, α}
α3 {α, α2} {1, α2} {1, α} {0, α3}


This hyperfield structure is obtained, with α = 1 +

√
−1, as the quotient of the finite field F9 =

F3(
√
−1) by the multiplicative group F3

× = {−1, 1}. It follows from Proposition 3.16 that F = F9/F9
×

is a hyperfield extension of F. Notice that the addition has a very easy description since for any two
distinct non-zero elements x, y the sum x + y is the complement of {x, y, 0} (cf. [5] and Proposition 3.16
below for a more general construction).

Proposition 3.15. [36]. Let K be a field with at least three elements. Then the hyperring K/K×
is isomorphic to the Krasner hyperfield. If, in general, R is a commutative ring and G ⊆ K× is a
proper subgroup of the group of units of R, then the hyperring R/G defined as above contains K as a
subhyperfield if and only if {0} ∪G is a subfield of R.

One of the important example of Krasner hyperfield, was constructed by above proposition is the
next example.

Example 3.16. (Important Example) (Adéle class space and Krasner). Consider a global field K. Its
adéle class space H = AK/K× is the quotient of a commutative ring AK by G = K×, and {0} ∪G = K,
so it is a hyperring extension of K.

Remark 3.17. Remark that the adéle class space plays a very important role in the non-commutative
program of solving the Riemann Hypothesis. (See for instance [37].)

Proposition 3.18. [36] Let H ⊇ K be a finite commutative hyperfield extension of K. Then one of the
following cases occurs:

(i) H = K[G] for a finite abelian group G.
(ii) There exists a finite field extension Fq ⊆ Fqm such that H = Fqm/Fq.
(iii) There exists a finite non-Desarguesian projective plane admitting a sharply point-transitive

automorphism group G, and G is the abelian incidence group associated to H.
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Proposition 3.19. In every hyperfield H. Then the following statements are satisfied:
(i) the hyperaddition completely is determined by {1 + x} for x ∈ H;
(ii) If 0 ∈ 1 + x for some x ∈ H, then x2 = 1.
(iii) Let G be a subgroup of multiplicative group (H×, .) of odd index. Then G = −G.

Proof. (i) Let x, y ∈ H. Then x + y = x(1 + x−1y).
(ii) Let 0 ∈ 1 + x, then 0 ∈ x(1 + x) = x + x2. Then x2 = 1.
(iii) By definition F/G is a hyperfield and by hypothesis it’s multiplicative group is of odd number.

By (ii) previous 0 belongs to G + G. Thus there exist a, b ∈ G, such that a + b = 0. Thus 1 + a−1b = 0,
and hence a−1b = −1. So, −1 ∈ G and ∀c ∈ G,−c ∈ G. Therefore G = −G. �

Let (G, .) be a group with identity 1. Letting R = G ∪ {0}, 0 < G and {Ax}x∈R be a family of non-
empty subsets of R such that

⋃
x∈R Ax = R. Define the hyperaddition + by 1 + x = x + 1 = Ax, A0 =

{0}, x + y = x.Ax−1y. Moreover, suppose that the family {Ax}x∈R are satisfied the following properties:

1. 0 ∈ A0;
2. x.Ax−1y = Axy−1 .y,∀x, y;
3. Ax + y = x + Ay, where Ax + y =

⋃
t∈Ax

(t + y);
4. y ∈ Ax ⇒ −x ∈ A−y.

The next result immediate consequence of Proposition 3.19.

Theorem 3.20. (R,+, .) is a hyperfield.

Proof. For non-zero elements x, y and z in R, one has

(x + y) + z = y[(y−1x + 1) + y−1z] = y[Ay−1 x + y−1z] =

y[y−1x + Ay−1z] = y[y−1x + (1 + y−1z)] = x + (y + z),

(R,+) is associative. (R,+, .) is distributive since one has,

x(y + z) = xyAy−1z = xyAy−1 x−1 xz = xy + xz.

On the other hands, we have

(y + z)x = yAy−1zx = Ayz−1zx = Ayxx−1zzx = yxAx−1y−1zx = yxA(yx)−1zx = yx + zx.

Clearly, 0 is identity element of (R,+). Also, ∀x ∈ R, consider −x = −1.x, that 0 ∈ x + (−x). If
x ∈ y + z, then y−1x ∈ 1 + y−1z = Ay−1z ⇒ −y−1z ∈ A−y−1 x = 1 − y−1x ⇒ z ∈ x − y. Similarly, we have
y ∈ x − z. Therefore, (R,+) is a canonical hypergroup. Thus (R,+, .) is a hyperfield. �

By the next examples we show that there exist, such a family of subsets for infinite case.

Example 3.21. Let R = {0,Q×}
⋃

x∈Qc x.Q×. Letting

A0 = {1 ≡ Q×}, A1 = {0, 1},

and for x ∈ R \ {0, 1}, Ax = 1 ⊕ x =
⋃

t,u∈Q×(t + ux). It is easy to verify that the family {Ax}x∈R satisfies
the conditions of the last theorem. So, (R,⊕, .) is an infinite hyperfield extension of K.
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Example 3.22. Let R≥0 be the set of non-zero real numbers. Consider the family

{Ax = [|1 − x|, 1 + x]}x∈R≥0 , Ax = 1 ⊕ x.

This family of subsets also satisfies the theorem conditions. So, (R≥0,⊕, .) is a hyperfield (triangle
hyperfield [16]).

Proposition 3.23. Let (H,+, .) and (R,⊕,�) be Krasner hyperfields and ϕ be a group isomorphism
between (H×, .) and (R×,�). If for every x ∈ H, ϕ(1 + x) = 1 ⊕ ϕ(x), then one can extend ϕ to a
hyperfield isomorphism between H and R by defining ϕ(0) = 0.

Proof. It is adequate to prove that for every x, y ∈ H, ϕ(x + y) = ϕ(x)⊕ ϕ(y). One can write x + y, x , 0
as x(1 + x−1y). So, we have

ϕ(x + y) = ϕ(x) � ϕ(1 + x−1y)
= ϕ(x) � (1 ⊕ ϕ(x−1y))
= ϕ(x) � (1 ⊕ ϕ(x)−1 � ϕ(y))
= ϕ(x) ⊕ ϕ(y). �

4. C++ Package

In this paper classification of finite hyperfields of order less than 7 is performed through three steps.
At first step by means of the theory of classification of finite groups all groups G of order m = n − 1
is obtained. In other words, multiplication action for hyperfield is given by the group action. In the
second step hyperoperation ⊕ is defined in a way that for H = G ∪ {0}, (H,⊕, .) is a Krasner hyperfield.
Referring to Theorem 3.18 it is enough to define hyperoperation + only for the element of the form
1 + x for every x ∈ H. By the computer programming power set P(H) of H is constructed. Then
a family of non-empty members of P(H), {Ax}x∈H is chosen(is not necessary unique). So for every
x ∈ H, Ax is devoted to each set 1 ⊕ x as set value meaning Ax = 1 ⊕ x. Then it is checked that
the conditions of theorem 1 is satisfied or not. Third step is about classifying these hyperfields up to
isomorphism. After computing all hyperfields of order n by referring to theorem 3.20, the program
finds automorphisms of multiplication group G as needed. Then it is checked the when the conditions
of theorem 3.20 is satisfied or not. Note that for each isomorphism the program simultaneously is
finding all isomorphisms between hyperfields. At last part of the program, isomorphism class of each
hyperfield is computed which by can find number of up to isomorphism hyperfields of order n. Main
part of the program with some comments is presented the appendix. At the following we will present
some results of running the program to construct all finite hyperfield of order less than or equal to 6 up
to isomorphism. Because the computational complexity of the program is exponentially high, we just
are able to compute hyperfields of order less than or equal to 6.

In row 4, columns 2 and 3 of the Table 1, the numbers 11, 16 represent the number of hyperfields
with Z2 × Z2 and Z4 as their multiplicative groups respectively. So totally there exist 11 + 16 = 27
hyperfield of order 5. Similarly discussed, there exist 1 + 1 = 2 hyperfield of order 5, extension of K.
In [39] hyperfields of order less than 6 is presented by a different approach. For the hyperfields of order
5 it is claimed that there exist 33 of them up to isomorphism. But for cases that do not presented here,
the addition fails to be associative.
In the sequel, we present all hyperfields of order less than or equal 6 up to isomorphism.
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Table 1. Number of finite hyperfields up to isomorphism for number of elements less than 7.

Num. of elements Num. of hyperfields Num. of hyperfields extension of K
2 2 1
3 5 0
4 7 0
5 11+16=27 1+1=2
6 16 1

4.1. Hyperfields of order 3

There are 5 hyperfields of order 3 up to isomorphism which all of them are quotient hyperfields.

Remark 4.1. Note that the underling multiplicative in all cases is isomorphic to Z2. At the following
by HFmn, we mean nth hyperfield of order m.

1. HF31 � (S,⊕,�)

+ 0 1 −1

0 0 1 −1
1 1 1 S
−1 −1 S −1

2. HF32 = Z3

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

3. HF33 � Z5/ < 4 >

+ 0 1 a

0 0 1 a

1 1 {0, a} {1, a}
a a {1, a} {0, 1}

4. HF34 � Z7/ < 4 >

+ 0 1 a

0 0 1 a

1 1 {1, a} {0, 1, a}
a a {0, 1, a} {1, a}
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5. HF35 quotient (see Proposition 3.17 in [35] for hyperfield HF33)

+ 0 1 a

0 0 1 a

1 1 {0, 1, a} {1, a}
a a {1, a} {0, 1, a}

4.2. Hyperfields of order 4 up to isomorphism

There are 7 hyperfields of order 4. There exists only one non-quotient hyperfield of order 4, HF44

which is the smallest non-quotient hyperfield.

Remark 4.2. Multiplication group in all cases is isomorphic to Z3

1. HF41 = F4

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1
b b a 1 0

2. HF42 � Z7/ < 6 >

+ 0 1 a b

0 0 1 a b

1 1 {0, a} {1, b} {a, b}

a a {1, b} {0, b} {1, a}
b b {a, b} {1, a} {0, 1}

3. HF43 � F16/ < α >, α
5 = 1

+ 0 1 a b

0 0 1 a b

1 1 {0, 1, a} {1, b} {a, b}

a a {1, b} {0, a, b} {1, a}
b b {a, b} {1, a} {0, 1, b}

4. HF44 non-quotient ( Theorem 3.1 in [34])

+ 0 1 a b

0 0 1 a b

1 1 {0, a, b} {1, a} {1, b}
a a {1, a} {0, 1, b} {a, b}

b b {1, b} {a, b} {0, 1, a}
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5. HF45 � Z13/ < 5 >

+ 0 1 a b

0 0 1 a b

1 1 {0, a, b} {1, a, b} {1, a, b}
a a {1, a, b} {0, 1, b} {1, a, b}
b b {1, a, b} {1, a, b} {0, 1, a}

6. HF46

+ 0 1 a b

0 0 1 a b

1 1 {0, 1, a, b} {1, a} {1, b}
a a {1, a} {0, 1, a, b} {a, b}

b b {1, b} {a, b} {0, 1, a, b}

7. HF47 � Z19/ < 8 >

+ 0 1 a b

0 0 1 a b

1 1 {0, 1, a, b} {1, a, b} {1, a, b}
a a {1, a, b} {0, 1, a, b} {1, a, b}
b b {1, a, b} {1, a, b} {0, 1, a, b}

4.3. Hyperfields of order 5

There are 27 hyperfields of order 5 which the multiplication group of 11 of them is Z2 × Z2 and 16
of them is Z4. For every multiplicative group there exist a hyperfiled extension of K.

4.3.1. Hyperfields of order 5 up to isomorphism with multiplication group isomorphic to Z2 × Z2

1. HF51

+ 0 1 a b c

0 0 1 a b c

1 1 1 {1, a} {1, b} {0, 1, a, b, c}
a a {1, a} a {0, 1, a, b, c} {a, c}

b b {1, b} {0, 1, a, b, c} b {b, c}

c c {0, 1, a, b, c} {a, c} {b, c} c
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2. HF52

+ 0 1 a b c

0 0 1 a b c

1 1 {0, 1} {b, c} {a, c} {a, b}

a a {b, c} {0, a} {1, c} {1, b}
b b {a, c} {1, c} {0, b} {1, a}
c c {a, b} {1, b} {1, a} {0, c}

3. HF53

+ 0 1 a b c

0 0 1 a b c

1 1 {1, a} {1, a} {1, a, b, c} {0, 1, a, b, c}
a a {1, a} {1, a} {0, 1, a, b, c} {1, a, b, c}
b b {1, a, b, c} {0, 1, a, b, c} {1, c} {b, c}

c c {0, 1, a, b, c} {1, a, b, c} {b, c} {b, c}

4. HF54

+ 0 1 a b c

0 0 1 a b c

1 1 {1, c} {1, a} {1, b} {0, 1, a, b, c}
a a {1, a} {a, b} {0, 1, a, b, c} {a, c}

b b {1, b} {0, 1, a, b, c} {a, b} {b, c}

c c {0, 1, a, b, c} {a, c} {b, c} {1, c}

5. HF55

+ 0 1 a b c

0 0 1 a b c

1 1 {1, a, b} {1, a, b, c} {1, a, b, c} {0, 1, a, b, c}
a a {1, a, b, c} {1, a, c} {0, 1, a, b, c} {1, a, b, c}
b b {1, a, b, c} {0, 1, a, b, c} {1, b, c} {1, a, b, c}
c c {0, 1, a, b, c} {1, a, b, c} {1, a, b, c} {a, b, c}

6. HF56

+ 0 1 a b c

0 0 1 a b c

1 1 {a, b, c} {1, a, b, c} {1, a, b, c} {0, a, b}
a a {1, a, b, c} {1, b, c} {0, 1, c} {1, a, b, c}
b b {1, a, b, c} {0, 1, c} {1, a, c} {1, a, b, c}
c c {0, a, b} {1, a, b, c} {1, a, b, c} {1, a, b}
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7. HF57 Non-quotient (see Proposition 2.7. in [38])

+ 0 1 a b c

0 0 1 a b c

1 1 {0, a, b, c} {1, a} {1, b} {1, c}
a a {1, a} {0, 1, b, c} {a, b} {a, c}

b b {1, b} {a, b} {0, 1, a, c} {b, c}

c c {1, c} {a, c} {b, c} {0, 1, a, b}

8. HF58 Non-quotient (by Theorem 3.1 in [34] and Theorem 1.3 in [40])

+ 0 1 a b c

0 0 1 a b c

1 1 {0, a, b, c} {1, a, b, c} {1, a, b, c} {1, a, b, c}
a a {1, a, b, c} {0, 1, b, c} {1, a, b, c} {1, a, b, c}
b b {1, a, b, c} {1, a, b, c} {0, 1, a, c} {1, a, b, c}
c c {1, a, b, c} {1, a, b, c} {1, a, b, c} {0, 1, a, b}

9. HF59

+ 0 1 a b c

0 0 1 a b c

1 1 {1, a, b, c} {1, a, b, c} {1, a, b, c} {0, 1, a, b, c}
a a {1, a, b, c} {1, a, b, c} {0, 1, a, b, c} {1, a, b, c}
b b {1, a, b, c} {0, 1, a, b, c} {1, a, b, c} {1, a, b, c}
c c {0, 1, a, b, c} {1, a, b, c} {1, a, b, c} {1, a, b, c}

10. HF510

+ 0 1 a b c

0 0 1 a b c

1 1 {0, 1, a, b, c} {1, a} {1, b} {1, c}
a a {1, a} {0, 1, a, b, c} {a, b} {a, c}

b b {1, b} {a, b} {0, 1, a, b, c} {b, c}

c c {1, c} {a, c} {b, c} {0, 1, a, b, c}

11. HF511
+ 0 1 a b c

0 0 1 a b c

1 1 {0, 1, a, b, c} {1, a, b, c} {1, a, b, c} {1, a, b, c}
a a {1, a, b, c} {0, 1, a, b, c} {1, a, b, c} {1, a, b, c}
b b {1, a, b, c} {1, a, b, c} {0, 1, a, b, c} {1, a, b, c}
c c {1, a, b, c} {1, a, b, c} {1, a, b, c} {0, 1, a, b, c}
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4.3.2. Hyperfields of order 5 up to isomorphism with multiplication group isomorphic to Z4

12. HF512

+ 0 1 a b c

0 0 1 a b c

1 1 1 {1, a} {0, 1, a, b, c} {1, c}
a a {1, a} a {a, b} {0, 1, a, b, c}
b b {0, 1, a, b, c} {a, b} b {b, c}

c c {1, c} {0, 1, a, b, c} {b, c} c

13. HF513 � F9/F×3

+ 0 1 a b c

0 0 1 a b c

1 1 {0, 1} {b, c} {a, c} {a, b}

a a {b, c} {0, a} {1, c} {1, b}
b b {a, c} {1, c} {0, b} {1, a}
c c {a, b} {1, b} {1, a} {0, c}

14. HF514 = Z5

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

15. HF515 quotient (by Proposition 4 in [14] for hyperfield HF514)

+ 0 1 a b c

0 0 1 a b c

1 1 {1, a} {1, a, c} {0, 1, a, b, c} {1, b, c}
a a {1, a, c} {a, b} {1, a, b} {0, 1, a, b, c}
b b {0, 1, a, b, c} {1, a, b} {b, c} {a, b, c}

c c {1, b, c} {0, 1, a, b, c} {a, b, c} {1, c}

16. HF516

+ 0 1 a b c

0 0 1 a b c

1 1 {1, b} {1, a} {0, 1, a, b, c} {1, c}
a a {1, a} {a, c} {a, b} {0, 1, a, b, c}
b b {0, 1, a, b, c} {a, b} {1, b} {b, c}

c c {1, c} {0, 1, a, b, c} {b, c} {a, c}
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17. HF517 � Z13/ < 3 >

+ 0 1 a b c

0 0 1 a b c

1 1 {a, b} {1, a, c} {0, a, c} {1, b, c}
a a {1, a, c} {b, c} {1, a, b} {0, 1, b}
b b {0, a, c} {1, a, b} {1, c} {a, b, c}

c c {1, b, c} {0, 1, b} {a, b, c} {1, a}

18. HF518 � Z17/ < 4 >

+ 0 1 a b c

0 0 1 a b c

1 1 {0, a, b} {1, b, c} {1, a, b, c} {a, b, c}

a a {1, b, c} {0, b, c} {1, a, c} {1, a, b, c}
b b {1, a, b, c} {1, a, c} {0, 1, c} {1, a, b}
c c {a, b, c} {1, a, b, c} {1, a, b} {0, 1, a}

19. HF519

+ 0 1 a b c

0 0 1 a b c

1 1 {1, a, b} {1, a, c} {0, 1, a, b, c} {1, b, c}
a a {1, a, c} {a, b, c} {1, a, b} {0, 1, a, b, c}
b b {0, 1, a, b, c} {1, a, b} {1, b, c} {a, b, c}

c c {1, b, c} {0, 1, a, b, c} {a, b, c} {1, a, c}

20. HF520

+ 0 1 a b c

0 0 1 a b c

1 1 {0, 1, a, b} {1, b, c} {1, a, b, c} {a, b, c}

a a {1, b, c} {0, a, b, c} {1, a, c} {1, a, b, c}
b b {1, a, b, c} {1, a, c} {0, 1, b, c} {a, b, c}

c c {a, b, c} {1, a, b, c} {a, b, c} {0, 1, a, c}

21. HF521 � Z29/ < 7 >

+ 0 1 a b c

0 0 1 a b c

1 1 {1, a, c} {1, a, b, c} {0, 1, a, b, c} {1, a, b, c}
a a {1, a, b, c} {1, a, b} {1, a, b, c} {0, 1, a, b, c}
b b {0, 1, a, b, c} {1, a, b, c} {a, b, c} {1, a, b, c}
c c {1, a, b, c} {0, 1, a, b, c} {1, a, b, c} {1, b, c}
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22. HF522

+ 0 1 a b c

0 0 1 a b c

1 1 {a, b, c} {1, a, b, c} {0, a, c} {1, a, b, c}
a a {1, a, b, c} {1, b, c} {1, a, b, c} {0, 1, b}
b b {0, a, c} {1, a, b, c} {1, a, c} {1, a, b, c}
c c {1, a, b, c} {0, 1, b} {1, a, b, c} {1, a, b}

23. HF523 Non-quotient (see Theorem3.1 in [35])

+ 0 1 a b c

0 0 1 a b c

1 1 {0, a, b, c} {1, a} {1, b} {1, c}
a a {1, a} {0, 1, b, c} {a, b} {a, c}

b b {1, b} {a, b} {0, 1, a, c} {b, c}

c c {1, c} {a, c} {b, c} {0, 1, a, b}

24. HF524 � Z41/ < 4 >

+ 0 1 a b c

0 0 1 a b c

1 1 {0, a, b, c} {1, a, b, c} {1, a, b, c} {1, a, b, c}
a a {1, a, b, c} {0, 1, b, c} {1, a, b, c} {1, a, b, c}
b b {1, a, b, c} {1, a, b, c} {0, 1, a, c} {1, a, b, c}
c c {1, a, b, c} {1, a, b, c} {1, a, b, c} {0, 1, a, b}

25. HF525 � Z37/ < 7 >

+ 0 1 a b c

0 0 1 a b c

1 1 {1, a, b, c} {1, a, b, c} {0, 1, a, b, c} {1, a, b, c}
a a {1, a, b, c} {1, a, b, c} {1, a, b, c} {0, 1, a, b, c}
b b {0, 1, a, b, c} {1, a, b, c} {1, a, b, c} {1, a, b, c}
c c {1, a, b, c} {0, 1, a, b, c} {1, a, b, c} {1, a, b, c}

26. HF526

+ 0 1 a b c

0 0 1 a b c

1 1 {0, 1, a, b, c} {1, a} {1, b} {1, c}
a a {1, a} {0, 1, a, b, c} {a, b} {a, c}

b b {1, b} {a, b} {0, 1, a, b, c} {b, c}

c c {1, c} {a, c} {b, c} {0, 1, a, b, c}

AIMS Mathematics Volume 5, Issue 6, 6552–6579.



6567

27. HF527

+ 0 1 a b c

0 0 1 a b c

1 1 {0, 1, a, b, c} {1, a, b, c} {1, a, b, c} {1, a, b, c}
a a {1, a, b, c} {0, 1, a, b, c} {1, a, b, c} {1, a, b, c}
b b {1, a, b, c} {1, a, b, c} {0, 1, a, b, c} {1, a, b, c}
c c {1, a, b, c} {1, a, b, c} {1, a, b, c} {0, 1, a, b, c}

4.4. Hyperfields of order 6 up to isomorphism

There are 16 hyperfields of order 6. Notice that as you can see against for fields the number of
elements is not necessarily a power of a prime number. Really there are hyperfield of any finite order
n , 1.

Remark 4.3. Multiplication group in all cases is isomorphic to Z5

1. HF61 � F16/F×4
+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1} {b, c, d} {a, c, d} {a, b, d} {a, b, c}

a a {b, c, d} {0, a} {1, c, d} {1, b, d} {1, b, c}
b b {a, c, d} {1, c, d} {0, b} {1, a, d} {1, a, c}
c c {a, b, d} {1, b, d} {1, a, d} {0, c} {1, a, b}
d d {a, b, c} {1, b, c} {1, a, c} {1, a, b} {0, d}

2. HF62 � Z11/ < 10 >

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, a} {1, c} {c, d} {a, b} {b, d}

a a {1, c} {0, b} {a, d} {1, d} {b, c}

b b {c, d} {a, d} {0, c} {1, b} {1, a}
c c {a, b} {1, d} {1, b} {0, d} {a, c}

d d {b, d} {b, c} {1, a} {a, c} {0, 1}

3. HF63 Non-quotient (by Theorem 3.1 in [34] and Theorem 1.3 in [40] )

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, a} {1, b, c, d} {a, c, d} {a, b, d} {a, b, c, d}

a a {1, b, c, d} {0, a, b} {1, a, c, d} {1, b, d} {1, b, c}
b b {a, c, d} {1, a, c, d} {0, b, c} {1, a, b, d} {1, a, c}
c c {a, b, d} {1, b, d} {1, a, b, d} {0, c, d} {1, a, b, c}
d d {a, b, c, d} {1, b, c} {1, a, c} {1, a, b, c} {0, 1, d}
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4. HF64 Non-quotient (by Theorem 3.1 in [34] and Theorem 1.3 in [40])

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, a, b} {1, b, c, d} {1, a, c, d} {a, b, c, d} {a, b, c, d}

a a {1, b, c, d} {0, b, c} {a, b, c, d} {1, a, b, d} {1, b, c, d}
b b {1, a, c, d} {a, b, c, d} {0, c, d} {1, a, b, d} {1, a, b, c}
c c {a, b, c, d} {1, a, b, d} {1, a, b, d} {0, 1, d} {1, a, b, c}
d d {a, b, c, d} {1, b, c, d} {1, a, b, c} {1, a, b, c} {0, 1, a}

5. HF65 � Z31/ < 6 >

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, a, b} {1, b, c, d} {1, a, c, d} {a, b, c, d} {a, b, c, d}

a a {1, b, c, d} {0, a, b, c} {a, b, c, d} {1, a, b, d} {1, b, c, d}
b b {1, a, c, d} {a, b, c, d} {0, b, c, d} {1, a, b, d} {1, a, b, c}
c c {a, b, c, d} {1, a, b, d} {1, a, b, d} {0, 1, c, d} {1, a, b, c}
d d {a, b, c, d} {1, b, c, d} {1, a, b, c} {1, a, b, c} {0, 1, a, d}

6. HF66non-quotient (by Theorem 3.1 in [34] and Theorem 1.3 in [40])

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, b, c} {b, c, d} {1, a, b, c, d} {1, a, b, c, d} {a, b, c}

a a {b, c, d} {0, 1, c, d} {1, c, d} {1, a, b, c, d} {1, a, b, c, d}
b b {1, a, b, c, d} {1, c, d} {0, 1, b, d} {1, a, d} {1, a, b, c, d}
c c {1, a, b, c, d} {1, a, b, c, d} {1, a, d} {0, 1, a, c} {1, a, b}
d d {a, b, c} {1, a, b, c, d} {1, a, b, c, d} {1, a, b} {0, a, b, d}

7. HF67 non-quotient (by Theorem 3.1 in [34] and Theorem 1.3 in [40])

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, a, b, c} {1, b, d} {1, a, b} {1, c, d} {a, c, d}

a a {1, b, d} {0, b, c, d} {1, a, c} {a, b, c} {1, a, d}
b b {1, a, b} {1, a, c} {0, 1, c, d} {a, b, d} {1, a, b}
c c {1, c, d} {a, b, c} {a, b, d} {0, 1, a, d} {1, b, c}
d d {a, c, d} {1, a, d} {1, a, b} {1, b, c} {0, 1, a, b}
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8. HF68 � Z41/ < 3 >

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, a, b, c} {1, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {a, b, c, d}

a a {1, b, c, d} {0, b, c, d} {1, a, c, d} {1, a, b, c, d} {1, a, b, c, d}
b b {1, a, b, c, d} {1, a, c, d} {0, 1, c, d} {1, a, b, d} {1, a, b, c, d}
c c {1, a, b, c, d} {1, a, b, c, d} {1, a, b, d} {0, 1, a, d} {1, a, b, c}
d d {a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c} {0, 1, a, b}

9. HF69 non-quotient (by Theorem 3.1 in [34] and Theorem 1.3 in [40])

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, a, b, c} {1, b, d} {1, a, b} {1, c, d} {a, c, d}

a a {1, b, d} {0, a, b, c, d} {1, a, c} {a, b, c} {1, a, d}
b b {1, a, b} {1, a, c} {0, 1, b, c, d} {a, b, d} {1, a, b}
c c {1, c, d} {a, b, c} {a, b, d} {0, 1, a, c, d} {1, b, c}
d d {a, c, d} {1, a, d} {1, a, b} {1, b, c} {0, 1, a, b, d}

10. HF610 � Z61/ < 21 >

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, a, b, c} {1, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {a, b, c, d}

a a {1, b, c, d} {0, a, b, c, d} {1, a, c, d} {1, a, b, c, d} {1, a, b, c, d}
b b {1, a, b, c, d} {1, a, c, d} {0, 1, b, c, d} {1, a, b, d} {1, a, b, c, d}
c c {1, a, b, c, d} {1, a, b, c, d} {1, a, b, d} {0, 1, a, c, d} {1, a, b, c}
d d {a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c} {0, 1, a, b, d}

11. HF611 non-quotient (see Theorem 3.1 in [35])

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, a, b, c, d} {1, a} {1, b} {1, c} {1, d}
a a {1, a} {0, 1, b, c, d} {a, b} {a, c} {a, d}

b b {1, b} {a, b} {0, 1, a, c, d} {b, c} {b, d}

c c {1, c} {a, c} {b, c} {0, 1, a, b, d} {c, d}

d d {1, d} {a, d} {b, d} {c, d} {0, 1, a, b, c}

AIMS Mathematics Volume 5, Issue 6, 6552–6579.



6570

12. HF612 non-quotient (by Theorem 3.1 in [34] and Theorem 1.3 in [40])

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, a, b, c, d} {1, a, c} {1, b, c, d} {1, a, b, c} {1, b, d}
a a {1, a, c} {0, 1, b, c, d} {a, b, d} {1, a, c, d} {1, a, b, c}
b b {1, b, c, d} {a, b, d} {0, 1, a, c, d} {1, b, c} {1, a, b, d}
c c {1, a, b, c} {1, a, c, d} {1, b, c} {0, 1, a, b, d} {1, a, d}
d d {1, b, d} {1, a, b, c} {1, a, b, d} {1, a, d} {0, 1, a, b, c}

13. HF613 � Z71/ < 51 >

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d}
a a {1, a, b, c, d} {0, 1, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d}
b b {1, a, b, c, d} {1, a, b, c, d} {0, 1, a, c, d} {1, a, b, c, d} {1, a, b, c, d}
c c {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {0, 1, a, b, d} {1, a, b, c, d}
d d {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {0, 1, a, b, c}

14. HF614

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, a, b, c, d} {1, a} {1, b} {1, c} {1, d}
a a {1, a} {0, 1, a, b, c, d} {a, b} {a, c} {a, d}

b b {1, b} {a, b} {0, 1, a, b, c, d} {b, c} {b, d}

c c {1, c} {a, c} {b, c} {0, 1, a, b, c, d} {c, d}

d d {1, d} {a, d} {b, d} {c, d} {0, 1, a, b, c, d}

15. HF615 quotient (see Proposition 4 in [35] for hyperfield HF62)

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, a, b, c, d} {1, a, c} {1, b, c, d} {1, a, b, c} {1, b, d}
a a {1, a, c} {0, 1, a, b, c, d} {a, b, d} {1, a, c, d} {1, a, b, c}
b b {1, b, c, d} {a, b, d} {0, 1, a, b, c, d} {1, b, c} {1, a, b, d}
c c {1, a, b, c} {1, a, c, d} {1, b, c} {0, 1, a, b, c, d} {1, a, d}
d d {1, b, d} {1, a, b, c} {1, a, b, d} {1, a, d} {0, 1, a, b, c, d}
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16. HF616 quotient(see Proposition 4 in [35] for hyperfield HF613)

+ 0 1 a b c d

0 0 1 a b c d

1 1 {0, 1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d}
a a {1, a, b, c, d} {0, 1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d}
b b {1, a, b, c, d} {1, a, b, c, d} {0, 1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d}
c c {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {0, 1, a, b, c, d} {1, a, b, c, d}
d d {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {1, a, b, c, d} {0, 1, a, b, c, d}

All presented hyperfields are commutative. For example we presented a finite non-commutative
K-extension hyperfield of order 7:

+ 0 1 a b c d e

0 0 1 a b c d e

1 1 {0, 1} {b, c, d, e} {a, c, d, e} {a, b, d, e} {a, b, c, e} {a, b, c, d}

a a {b, c, d, e} {0, a} {1, c, d, e} {1, b, d, e} {1, b, c, e} {1, b, c, d}
b b {a, c, d, e} {1, c, d, e} {0, b} {1, a, d, e} {1, a, c, e} {1, a, c, d}
c c {a, b, d, e} {1, b, d, e} {1, a, d, e} {0, c} {1, a, b, e} {1, a, b, d}
d d {a, b, c, e} {1, b, c, e} {1, a, c, e} {1, a, b, e} {0, d} {1, a, b, c}
e e {a, b, c, d} {1, b, c, d} {1, a, c, d} {1, a, b, d} {1, a, b, c} {0, e}

· 0 1 a b c d e

0 0 0 0 0 0 0 0
1 0 1 a b c d e

a 0 a 1 e d c b

b 0 b d 1 e a c

c 0 c e d 1 b a

d 0 d b c a e 1
e 0 e c a b 1 d

5. Conclusions

Here we presented all finite hyperfields of order less than 7 with their tables of operations which
could be considered as a source of study on finite hyperfields and verify properties of fields as like for
hyperfields. For instance by extending characteristic notion in field theory to hyperfield theory, we see
that in HF515, 0 < 1 + 1 and 0 < 1 + 1 + 1, but 0 ∈ 1 + 1 + 1 + 1. Which means that the characteristic of a
hyperfield is not necessarily a prime number as it is for fields. Watching these tables we find out that it
is not possible to introduce number of construction methods for all finite hyperfields whereas there are
hyperfields that could not be construct by the methods since known. Hyperfields S,HF51 and HF512

are characteristic 1 which by one can study the extension of characteristic 1 geometry on hyperfileds.
Also hyperfields presented here, could be considered in coding and cryptography theory.

6. Appendix

Here we present main part of the program which produce all hyperfields of order 5 of the given
group G with some comments:

At first after inputting elements of hyperfield and defining group action M[i][ j] = arr[i] ∗ arr[ j] an
elements the program makes power set P(H) of hyperfield elements:

H= {0 , 1 , a , b , c } , a . a =1 , b . b =1 , c . c =1 , a . b=c , a . c=b , b . c=a ;
f o r ( l =0; l <n ; l ++){

c i n >> a r r [ l ] ; }
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f o r ( i =0; i <n ; i ++){
f o r ( j =0; j <n ; j ++)
cou t <<” E n t e r ”<< a r r [ i ]<<”∗”<< a r r [ j ]<<”=”;

c i n >> M[ i ] [ j ] ; }
f o r ( i =0; i <(1<<n ) ; i ++){
f o r ( j =0; j <n ; j ++)}

i f ( i & (1 << j ) ) {
A[ i ] . i n s e r t ( a r r [ j ] ) ; }

0 must belong to one and only one 1 + x, x ∈ H \ {0},

f o r ( h =0; h<n−1; h ++){
i f (B[ h ] . f i n d ( ’ 0 ’ ) ! =B[ h ] . end ( ) )

w+=1; }
i f (w==1){
w=0 ; }

Every non zero element have to belong to at least one 1 + x, x ∈ H,

f o r ( q =2; q<(1<<n ) ; q ++){
f o r ( h =0; h<n−1; h ++)}

i f (B[ h ] . f i n d ( a r r [ q ] ) ! =B[ h ] . end ( ) ) {
w+=1; }

i f (w! = 0 ) {
z +=1; }

i f ( z+2==(1<<n ) ) {
w=0;
z =0 ; }

Distributivity of multiplication whit respect to addition from left,
F[h][q] = arr[h] + arr[q] = arr[h](1 + arr[y])(arr[h]arr[y] = arr[q]) and from right,

G[h][q] = arr[h] + arr[q] = (1 + arr[y])arr[q](arr[y]arr[q] = arr[h]).

f o r ( h =0; h<n ; h ++){
f o r ( q =0; q<n ; q ++){
f o r ( y =1; y<n ; y ++){

i f (M[ h ] [ y]== a r r [ q ] ) {
f o r ( p =0; p<n ; p ++){
i f (B[ y −1 ] . f i n d ( a r r [ p ] ) ! =B[ y −1 ] . end ( ) )
F [ h ] [ q ] . i n s e r t (M[ h ] [ p ] ) ; } } } } }

f o r ( h =0; h<n ; h ++){
f o r ( q =0; q<n ; q ++){
f o r ( y =1; y<n ; y ++){
i f (M[ y ] [ q]== a r r [ h ] ) {
f o r ( p =0; p<n ; p ++){
i f (B[ y −1 ] . f i n d ( a r r [ p ] ) ! =B[ y −1 ] . end ( ) )

G[ h ] [ q ] . i n s e r t (M[ p ] [ q ] ) ; } } } } }
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f o r ( h =0; h<n ; h ++){
f o r ( q =0; q<n ; q ++){
i f ( F [ h ] [ q ] !=G[ h ] [ q ] )
z +=1; }
i f ( z ==0)}

This part of program checks associativity. It is enough to check
C[h][q] = (x + 1) + y = x + (1 + y) = D[h][q]. For every x, y ∈ H.

f o r ( h =0; h<n−2; h ++){
i f (w!=0)
b r e a k ;
e l s e

f o r ( q=h +2; q<n ; q ++){
i f (B[ h ] . f i n d ( a r r [ 0 ] ) ! =B[ h ] . end ( ) )
C[ h ] [ q ] . i n s e r t ( a r r [ q ] ) ;
i f (B[ h ] . f i n d ( a r r [ 1 ] ) ! =B[ h ] . end ( ) ) {

f o r ( i t =B[ q −1 ] . b e g i n ( ) ; i t !=B[ q −1 ] . end ( ) ;++ i t )
C[ h ] [ q ] . i n s e r t (∗ i t ) ; }

f o r ( t =2; t <n ; t ++){
i f (B[ h ] . f i n d ( a r r [ t ] ) ! =B[ h ] . end ( ) ) {

f o r ( i t =F [ t ] [ q ] . b e g i n ( ) ; i t !=F [ t ] [ q ] . end ( ) ;++ i t )
C[ h ] [ q ] . i n s e r t (∗ i t ) ; } }

i f (B[ q −1 ] . f i n d ( a r r [ 0 ] ) ! =B[ q −1 ] . end ( ) )
D[ h ] [ q ] . i n s e r t ( a r r [ h + 1 ] ) ;
i f (B[ q −1 ] . f i n d ( a r r [ 1 ] ) ! =B[ q −1 ] . end ( ) ) {
f o r ( i t =B[ h ] . b e g i n ( ) ; i t !=B[ h ] . end ( ) ;++ i t )

D[ h ] [ q ] . i n s e r t (∗ i t ) ; }
f o r ( t =2; t <n ; t ++){

i f (B[ q −1 ] . f i n d ( a r r [ t ] ) ! =B[ q −1 ] . end ( ) ) {
f o r ( i t =F [ h +1] [ t ] . b e g i n ( ) ; i t !=F [ h +1] [ t ] . end ( ) ;++ i t )

D[ h ] [ q ] . i n s e r t (∗ i t ) ; } }
i f (C[ h ] [ q ] !=D[ h ] [ q ] ) {

w+=1; }
i f (w==0) {\ sum\sum

This part of program checks reversibility:

arr[q] ∈ (1 + arr[h + 1]) = B[h]⇔ arr[h + 1] ∈ arr[q] − 1 = arr[q] + arr[y + 1] = F[q][y + 1],

f o r ( y =0; y<n−1; y ++){ i f (B[ y ] . f i n d ( ’ 0 ’ ) ! =B[ y ] . end ( ) ) }
f o r ( h =0; h<n−1; h ++){
f o r ( q =1; q<n ; q ++)}

i f (B[ h ] . f i n d ( a r r [ q ] ) ! =B[ h ] . end ( ) ) {
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&&F [ q ] [ y + 1 ] . f i n d ( a r r [ h+1])==F [ q ] [ y + 1 ] . end ( )
x++;

}

i f ( x ==0){
m+=1;

This part of program is related to third step. Computation goes on for finding automorphism on the
given group G. At first it finds an one to one mapping.

cout <<” s t a t e :”<<m<<”\n ” ;
f o r ( h =1; h<n ; h ++){
S e t v a l u e [m] [ h−1]=B[ h −1 ] ;

cou t <<”1+”<< a r r [ h ] < <”={”;
f o r ( i t =B[ h −1 ] . b e g i n ( ) ; i t !=B[ h −1 ] . end ( ) ;++ i t ) {

cout <<∗ i t ;
i f ( i t !=−−B[ h −1 ] . end ( ) )

cou t < <” ,” ; }
cout <<”}”<<”\n ” ; {

f o r ( h =0; h<n ; h ++){
f o r ( q =0; q<n ; q ++){
C[ h ] [ q ] . c l e a r ( ) ;
D[ h ] [ q ] . c l e a r ( ) ;
F [ h ] [ q ] . c l e a r ( ) ;
G[ h ] [ q ] . c l e a r ( ) ; } } }
cout <<”m=”<<m<<e n d l ;

Ph i [0 ]= a r r [ 0 ] ;
Ph i [1 ]= a r r [ 1 ] ;
x =0;
f o r ( h =0; h<n ; h ++){
f o r ( q =0; q<n ; q ++){
Matx [ h ] [ q ] = 0 ; } }

f o r ( i =2; i <n;++ i ) {
Phi [2 ]= a r r [ i ] ;
Matx [ 2 ] [ i ]=1 ;

f o r ( j =2; j <n;++ j ) {
Phi [3 ]= a r r [ j ] ;
Matx [ 3 ] [ j ]=1 ;
f o r ( r =2; r<n;++ r ) {

Phi [4 ]= a r r [ r ] ;
Matx [ 4 ] [ r ]=1 ;

Matx [ 0 ] [ 0 ] = 1 ;
Matx [ 1 ] [ 1 ] = 1 ;

f o r ( h =0; h<n ; h++)
{w=0;

f o r ( q =0; q<n ; q ++){
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w+=Matx [ q ] [ h ] ; }
i f (w! = 1 ) {
w=0;
b r e a k ; } }

i f (w==1){

In this part the program checks that whether or not the mapping is an automorphism.

f o r ( h =0; h<n ; h ++){
f o r ( q =0; q<n ; q ++){
C[ h ] [ q ] . c l e a r ( ) ;
D[ h ] [ q ] . c l e a r ( ) ; } }

f o r ( h =1; h<n ; h ++){
f o r ( q =1; q<n ; q ++){
f o r ( k =1; k<n ; k ++){
i f (M[ h ] [ q]== a r r [ k ] ) {
C[ h ] [ q ] . i n s e r t ( Ph i [ k ] ) ; } } } }
f o r ( h =1; h<n ; h ++){
f o r ( q =1; q<n ; q ++){
f o r ( k =1; k<n ; k ++){
f o r ( l =1; l <n ; l ++){
i f ( Ph i [ h]== a r r [ k]&&Phi [ q]== a r r [ l ] )

D[ h ] [ q ] . i n s e r t (M[ k ] [ l ] ) ; } } } }
w=0;
f o r ( h =1; h<n ; h ++){
f o r ( q =1; q<n ; q ++){
i f (C[ h ] [ q ] !=D[ h ] [ q ] ) {

w+ = 1 ; } } }
i f (w==0){
f o r ( h =0; h<n ; h ++){
cout <<” Phi [”<<h<<”]=”<<Phi [ h]<< e n d l ; }

x+=1;
cout <<” f o r automorphism ”<<x<<” one has t h e s e

i somorph i sms between hyp
e r f i e l d s :”<< e n d l ;

For the automorphism by proposition 10 it checks isomorphism between hyperfields.

f o r ( h =1; h<m+1 ; h ++){
f o r ( q =1; q<n ; q ++){
f o r ( k =0; k<n ; k ++){

i f ( S e t v a l u e [ h ] [ q −1 ] . f i n d ( a r r [ k ] ) ! = S e t v a l u e [ h ] [ q −1 ] . end ( ) )
F [ h ] [ q −1 ] . i n s e r t ( Ph i [ k ] ) ; } } }
f o r ( h =1; h<m+1; h ++){
f o r ( k =1; k<n ; k ++){
f o r ( q =1; q<n ; q ++){
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i f ( Ph i [ k]== a r r [ q ] )
G[ h ] [ k−1]= S e t v a l u e [ h ] [ q − 1 ] ; } } }

f o r ( h =1; h<m+1; h ++){
f o r ( q =1; q<m+1; q ++){

f o r ( k =0; k<n−1; k ++){
i f ( F [ h ] [ k]==G[ q ] [ k ] )
w+=1;

i f (w==n−1) {
cout <<” H y p e r f i e l d o f s t a t e :”<< h <<” , i s i s o m o r p h i c t o

h y p e r f i e l d o f s t a t e : ” << q << e n d l ; {

At the end the program computes the number of isomorphism class for each hyperfield which by one
can state the number of hyperfields of order 5, up to isomorphism.

Isonum [ h ] . i n s e r t ( q ) ; } } }
w= 0 ; } }

f o r ( h =1; h<m+1; h ++){
f o r ( q =0; q<n−1; q ++){

F [ h ] [ q ] . c l e a r ( ) ;
G[ h ] [ q ] . c l e a r ( ) ; } }

f o r ( h =0; h<n ; h ++){
Matx [ 4 ] [ h ] = 0 ; } }

f o r ( h =0; h<n ; h ++){
Matx [ 3 ] [ h ] = 0 ; }

f o r ( h =0; h<n ; h ++){
Matx [ 2 ] [ h ] = 0 ; } }

f o r ( h =1; h<m+1; h ++){
z =0;

f o r ( i t i n =Isonum [ h ] . b e g i n ( ) ; i t i n != Isonum [ h ] . end ( ) ;++ i t i n )
z +=1; }

cout <<” Isomorphism c l a s s o f s t a t e ”<<h<<” c o n t a i n s ”<<z<<”
e l e m e n t s .”<< e n d l ; }
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