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Abstract: For the problem of inconsistent quantitative standards for running status analysis of rolling 
bearings, this paper uses principal component analysis (PCA) to extract a new index F, which is the 
joint parameters of time domain and frequency domain, and by establishing the value of F to analyze 
the running states of the rolling bearings. Firstly, the acceleration sensors are used to collect the 
vibration signal of the whole life cycle of the rolling bearings. Secondly, empirical mode 
decomposition (EMD) method is used to denoise the acquired vibration signal. Then, the main 
components of the denoised vibration signal are used to propose the characteristic parameters and 
synthesized into new parameter indicators. Finally, envelope analysis spectrum is used to analyze the 
fault classification under the new parameter index. The exepriment results show that the whole life 
cycle of the rolling bearings can be classified into five different operating periods by using the new 
parameter index, and each period represents a different bearing operating state. 
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1. Introduction 

The rolling bearings are key components of rotary machines, they also create a variety of faults. 
These failures can lead to downtime and huge economic losses [1–3]. According to the current 
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statistical data, it can be known that about one-third of the malfunctions of rotary machines are 
caused by bearing failures [4–7]. Therefore, it is necessary to monitor bearing condition efficiently 
[8–10]. 

Bearing failure is a multi-state process. The state in this process cannot be observed directly. 
Therefore, the measurement signals require professional analysis [11–14]. The majority of common 
intelligent fault diagnosis systems are built on the basis of feature extraction of monitoring 
signals [15]. Traditional feature signal extraction method mainly include wavelet transform 
(WT) [12,13], Hilbert Huang Transform (HHT) [16], empirical mode decomposition (EMD) [17], 
variational mode decompositions (VMD) [18]. Lu et al. [19] introduced a novel feature extraction 
method using adaptive multi-wavelets based on genetic algorithm and the synthetic detection index. 
Zheng et al. [20] analyzed an adaptive parameterless empirical wavelet transform and normalized 
Hilbert transform for rotor rubbing fault diagnosis. Cheng et al. [21] presented a new fault diagnosis 
method based on deep learning and Hilbert transform for the drivetrain gearboxes. For the study of 
bearing life, Ocak et al. [22] proposed HMM-based fault detection and diagnosis of rolling bearings. 
Gebraeel [23] studied residual life predictions from vibration-based degradation signals. Sun et 
al. [24] applied SVM technology in life prediction to improve prediction accuracy. Vlok et al. [25] 
analyzed the use of statistical residual life estimates of bearings to quantify the influence of 
preventive maintenance actions. A Hidden Markov Models is introduced into the prediction of 
bearing fatigue life in [26,27], and achieved a good analysis effect. Shao et al. [28] studied using the 
kurtosis index and the root mean square value as the characteristic parameters of the collected 
vibration signals, and used the neural network to predict the bearing vibration characteristics, but the 
progress in life prediction was not smooth. Ben et al. [29] combined the neural network and Weibull 
distribution to predict the bearing life, which defined six degradation states of the bearing. The other 
optimization algorithms are used to combine with signal processing methods [30–41]. 

Based on the above analysis, it has been found that there are three main problems in the 
research of bearing life: the acquisition of bearing operation life cycle data, the choice of parameters 
for the study of bearing operation status, and the selection of prediction models. Aiming at these 
problems, this paper proposes corresponding solutions. Firstly, the experimental data is acquired 
through an experimental device. Then, a new parameter index F for bearing life analysis is proposed. 
Finally, the new parameter index F is used to divide the bearing life states.  

2. Signal selection 

To accurately predict bearing life, data selection is crucial. The monitoring of the bearing’s 
operating conditions can usually be oil sample analysis, temperature monitoring, vibration 
monitoring [42]. The oil sample analysis method is only applicable to bearings with oil lubrication, 
and is not suitable for bearings with grease lubrication. At the same time, this method is easily 
affected by other non-bearing component, so it has greater limitations. Temperature monitoring will 
only increase the temperature obviously when the bearing failure reaches a certain level, but in the 
early stage of the bearings failure, the bearings temperature is almost unaffected; Vibration 
monitoring uses sensors to collect signals, and then analyzes the current running status of the 
bearings based on the collected signals. Under different working conditions, the bearing’s vibration 
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data graphic form is different, which has a good discrimination effect. Therefore, this paper adopts 
vibration monitoring and selects the bearing vibration data as the analysis basis. The vibration 
signals collected by rolling bearings under different operating conditions are shown in Figure 1. 

 

Figure 1. Vibration data of rolling bearings at different times. (a) Normal state vibration 
signal, (b) Early fault vibration signal, (c) Medium-term fault vibration signal, (d) 
vibration signal in the end of life. 

It can be concluded from Figure 1 that under different working conditions, there is a significant 
difference in the vibration data of rolling bearings, which is beneficial for determining the operating 
status of the bearings. So it is reliable to use the vibration signal data as the analysis data. 
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In the study of this paper, the time interval of collected vibration data is ten minutes, each 
sampling data is 180,000, among them the rolling bearing used is N205, the rotational speed is 
1500 rad/min. 

3. Signal denoising 

In the EMD, we can decompose an original signal into several Intrinsic Mode Function (IMF) 
components. By using the correlation coefficient between the IMF component and the original signal, 
we can discriminate useful and pseudo-components. At the same time, we can also distinguish some 
noise components through the correlation coefficient. Studies have shown that white noise is irrelevant 
to any signal, so it can be known that the correlation between the IMF component produced by the 
noise and the original signal is small, which allows us to easily eliminate the noise components and 
retain useful actual signal components. 

We can obey the following two principles can be obeyed to determine whether it is a noise 
signal in the EMD: 
(i) Cross-correlation analysis. The cross-correlation between the white noise and the original signal is 
zero. When judging the noise signal, if the derived component has a small correlation coefficient with 
the original signal, this component may be a noise component. 
(ii) Autocorrelation analysis. White noise autocorrelation usually achieves a maximum on the axis of 
symmetry and the rest are zero. Therefore, it may be that the component of the noise signal obtained  
in (1) is further subjected to autocorrelation calculation. If the maximum value is obtained on the axis 
of symmetry and other values are small, the component may be determined as noise. 

Judging from the above two principles, we can eliminate the noise signal in the EMD 
decomposition to achieve signal denoising (Figure 2). 

 

Figure 2. Comparison between EMD denoised signal and original signal. (a) Raw signal 
power spectrum, (b) EMD denoising signal power spectrum. 

4. Analysis of characteristic parameters of rolling bearings 

4.1. Analysis of time domain characteristic parameters of rolling bearings 

If an abnormal situation occurs in the rolling bearing during operation, some statistics of the 
time domain parameters of the vibration signal can reflect the characteristic information of the fault 
signal to a certain extent. We select the maximum value, minimum value, peak-to-peak value, mean 
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value, variance, standard deviation, root mean square (RMS) value, skewness, crest factor, kurtosis 
value, and degree of skewness in the time domain parameters as the basis for judging whether the 
bearing has failed [43]. 

By analyzing the experimental data, the overall trend of the entire life cycle of traditional time 
domain indicators are shown in Figure 3. 

 

Figure 3. Trend of time domain parameter indicators.  

As can be seen from Figure 3, the maximum value, minimum value, standard deviation, RMS 
value, and peak-to-peak values of the traditional time domain parameter indicators perform better at 
the end of the full life of the rolling bearing. Skewness indicator fluctuates significantly in the middle 
of the full life of the rolling bearing, and there are some differences at the end. The kurtosis value 
indicator performs the best in all indicators, and the parameter amplitude has changed significantly 
throughout the middle and end of the whole life. In summary, different time domain parameter 
indexes have their own advantages and disadvantages, but as far as the whole life cycle is concerned, 
no time domain parameter index can fully represent the changing trend of the entire life of the rolling 
bearings. 

4.2. Analysis of frequency domain characteristic parameters of rolling bearings 

Using the characteristic parameters in the frequency domain to describe the running status of 
rolling bearings is also a universal monitoring method. Its characteristic parameters are usually 
statistical functions, such as frequency domain average, center of gravity frequency, mean square 
frequency, frequency domain amplitude variance, frequency domain amplitude standard deviation, 
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frequency domain amplitude deviation index, frequency domain amplitude kurtosis index. The time 
domain signal is converted into the frequency domain range by Fourier change, then the bearings 
fault and variation trend can be judged by the change of the frequency component. 

Based on experimental data, the overall trend of the traditional frequency domain indicators 
over the entire life cycle are shown in Figure 4. 

 

Figure 4. Trend of frequency domain parameter indicators. 

It can be known from Figure 4 that under the frequency domain index of the rolling bearings 
full life cycle data, the frequency domain amplitude deviation index and the frequency domain 
amplitude kurtosis index have large fluctuations. Center of gravity frequency is stable throughout the 
life cycle. The mean square frequency is significantly different in the early and middle stages of life. 
Throughout the entire life cycle, the frequency domain amplitude standard deviation, frequency 
domain amplitude variance, and frequency domain average have obvious state changes. To sum up, 
although some parameters have a good distinction between the running status of the bearings, but in 
terms of the entire life states, no one indicator can fully represent the entire change trend of the 
rolling bearings. 

In summary, the traditional time domain indicators perform well at the end of their full life, 
while the frequency domain indicators have certain advantages in the middle. Therefore, a new 
judgment indicator needs to be proposed, which can complement the advantages of the two. 
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5. Feature parameter extraction based on PCA 

Principal component analysis (PCA) is mainly a linear multivariate statistical analysis method 
that selects a few variables from multiple variables, and the selected few variables can still represent 
most of the original variables. The original multiple variables are likely to be relevant, but the 
selected few variables after the PCA are irrelevant. From the perspective of mathematics, the 
selection of variables in PCA is actually the idea of dimension reduction. That is to reduce the 
number of variables in bearing fault diagnosis, and select the representative parameter variables that 
can analyze bearing failure [44,45]. 

5.1. Analysis steps 

In the PCA, an n m×  matrix needs to be established and named X, n indicates the number of 
data, m represents the number of original variables [46,47]. 
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In order to eliminate the impact of dimension on modeling, the formula for data normalization 
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( )
1

1

    0
   
0     

m
T T

i i i
i

m

COV X P P PP
λ

λ
λ =

 
 = = 
  

∑O

                       

(3) 

COV(X)𝑃𝑖 = 𝜆𝑖𝑃𝑖 

where 1 2, , mλ λ λ⋅⋅⋅ are the eigenvalues of the covariance matrix arranged in descending order, that is, 
1 2 mλ λ λ≥ ≥ ⋅⋅⋅ ≥ . 1 2, , , mP P P⋅ ⋅ ⋅  are feature vectors corresponding to each feature value. The normalized 

matrix is decomposed with eigenvectors as shown in Eq (4). 

1 1 2 2
ˆ = T T T T

k kX t P t P t P E TP E+ + + + = +L                        (4) 

where T  is the score matrix, P  represents the load matrix, it  is he score vector, k is the number of 

principal elements, E is the residual matrix, which indicates redundant information and noise in the 
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original data. In the PCA, the score vector is orthogonal to each other. The load vector is also 
orthogonal to each other, and the length of each load vector is 1. Eq (5) will be obtained by multiplying 

both sides of Eq (4) by iP . 

1 1 2 2
T T T

i i i m m iXP t P P t P P t P P= + + +L                           (5) 

So i it XP= . The above formula shows that the score vector is essentially the projection of the 

data matrix X on its corresponding load vector square. According to the length, the score vector can be 
arranged as follows: 

1 2 mt t t> > >L                                   (6) 

Because the error matrix E  is mainly caused by measurement errors, ignoring E  can have the 
effect of removing noise and will not cause the loss of useful information in the data. In a word, the 
essence of the PCA of data is to consider the process of the projection of the data matrix on its load 
vector, that is, to reduce the m-dimensional data variable to the k-dimensional data variable by using 
the projection transformation. Therefore, the data X can be approximated by the following formula: 

'
1 1 2 2

T T T
k kX t P t P t P= + + +L                              (7) 

The basis for selecting the number of principal components is to calculate the cumulative degree 
of the number of principal components to the data. If the cumulative contribution rate of the first k 
principal components exceeds a threshold value of 0.85, it can be considered that it is feasible to 
extract the first k principal components as comprehensive indicators. Therefore, the original 
m-dimensional space becomes a k-dimensional space, which plays a role in dimension reduction. 
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(8) 

The comprehensive indicator kF is extracted, which can reflect the information possessed by the 
original multiple variables to the greatest extent, and at the same time, it must be ensured that the 
information of a few new indicators does not overlap and is not relevant. 

1 11 1 21 2 1m mF a X a X a X= + + +L                           (8) 

where 1F  refers to the principal component index composed of the first linear combination in the 
original data, which contains the largest amount of information. The largest linear combination of

1 2, , , mX X X⋅ ⋅ ⋅  among many linear combinations of 1 2, , , mX X X⋅ ⋅ ⋅  is selected as 1F , and 1F  is called the 
first principal component. If the first principal component cannot fully represent the characteristic 
information of the original m indicators, the second principal component 2F  needs to be considered, 
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and at the same time, 1F and 2F  must be kept independent and uncorrelated. By analogy, 1 2, , , kF F F⋅ ⋅ ⋅  
can be constructed. The principal component model can be expressed as follow. 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

                        

m m

m m

k k k km m

F a X a X a X
F a X a X a X

F a X a X a X

= + + +
 = + + +


 = + + +

L
L

M
L                         

(9) 

The fused data F extracted by PCA is: 
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5.2. Extraction of time domain characteristic parameter indicators 

When analyzing the fault life status of rolling bearings, firstly, the maximum value, minimum 
value, peak-to-peak value, mean value, variance, standard deviation, RMS value, skewness, crest 
factor, kurtosis value, and skewness are extracted by conventional methods. Time domain parameters 
are used as analysis variables, m = 11. Then SPSS software is used to decompose the principal 
components of the time domain characteristic parameters of the rolling bearing [48]. The results are 
shown in Table 1 and Table 2: 

Table 1. Explaining the total variance. 

Ingredie-nts 
Initial feature value Extract square and load 

Total Variance (%) Grand total (%) Total Variance (%) Grand total (%) 
1 5.546 50.417 50.417 5.546 50.417 50.417 

2 2.386 21.694 72.110 2.386 21.694 72.110 

3 1.583 12.392 84.503 1.363 12.392 84.503 

4 1.015 11.224 95.726 1.234 11.224 95.726 

5 0.320 2.907 98.633 — — — 

6 0.105 0.952 99.586 — — — 

7 0.024 0.214 99.800 — — — 

8 0.015 0.138 99.937 — — — 

9 0.006 0.052 99.989 — — — 

10 0.001 0.011 100.000 — — — 

11 .001E-13 .005E-013 00.000 — — — 
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Table 2. Component matrix. 

Parameter index 
Ingredients 

1 2 3 4 

Maximum value 0.975 -0.060 0.047 -0.177 
Minimum value -0.843 0.429 -0.013 0.297 
Peak-to-peak value 0.939 -0.240 0.032 -0.240 
Mean value 0.464 0.605 -0.241 0.558 
Variance 0.789 0.324 -0.306 0.350 
Standard deviation 0.984 0.042 -0.132 -0.062 
RMS value 0.977 0.108 -0.163 0.013 
Skewness 0.113 0.878 0.391 -0.239 
Crest factor 0.377 -0.305 0.749 0.194 
Kurtosis value 0.287 -0.253 0.710 0.461 
Degree of skewness 0.059 0.854 0.408 -0.304 

The main formulas and fusion parameter formulas can be obtained from Table 1 and Table 2: 

1 1 2 3 4 5 6

7 8 9 10 11

0.975 0.843 0.939 0.464 0.789 0.984
       0.977 0.113 0.377 0.287 0.059
F x x x x x x

x x x x x
= − + + + +
+ + + + +

 

2 1 2 3 4 5 6

7 8 9 10 11

0.06 0.429 0.24 0.605 0.324 0.042
         +0.108 +0.878x -0.305x -0.253x +0.854x
F x x x x x x

x
= − + − + + +  

    
3 1 2 3 4 5 6

7 8 9 10 11

0.047 0.013 0.032 0.241 0.306 0.132
       0.163 0.931 0.749 0.710 0.408
F x x x x x x

x x x x x
= − + − − −
− + + + +

               (11) 

4 1 2 3 4 5 6

7 8 9 10 11

0.177 0.297 0.240 0.558 0.350 0.062
       0.013 0.239 0.194 0.461 0.304
F x x x x x x

x x x x x
= − + − + + −
+ − + + −

 

1 2 3 450.417% 21.694% 12.392% 11.224%
95.726%

F F F FF + + +
=

 

Since the new feature parameter F is formed by combining the original feature parameters 
through a linear operation, the new parameter F contains the features of the original parameters, and 
the performance of these parameters is combined to provide better feedback [49]. The trend chart of 
the new parameter index F in the whole life cycle is shown in Figure 5. 

It can be seen from Figure 5 that the parameter index F extracted by PCA can divide the bearing 
state into four stages throughout the entire life cycle of the rolling bearings. However, as far as 
Figure 5 is concerned, the second and third phases should be relative to the three operating states of the 
bearings, namely normal operation, early failure, and intermediate failure. The parameter indicators 
extracted in the time domain cannot effectively divide them. Therefore it is limited to consider only 
time domain parameters. 
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Figure 5. Trend of time domain synthesis parameter F. 

5.3. Extraction of frequency domain characteristic parameter indicators 

For the collected cycle life data of rolling bearing N205, the frequency domain average value, 
center of gravity frequency, mean square frequency, frequency domain amplitude variance, frequency 
domain amplitude standard deviation, frequency domain amplitude deviation index, and frequency 
domain amplitude are selected as frequency domain analysis variables, which is m = 7. By using 
Statistical Package for the Social Sciences (SPSS) software, the principal components of the frequency 
domain characteristic parameters of the rolling bearings are decomposed. The results are shown in 
Table 3 and Table 4. 

Table 3. Total variance explained. 

Ingredi-ents 
Initial feature value Extract square and load 

Total Variance (%) Grand total (%) Total Variance (%) Grand total (%) 

1 2.779 39.701 39.701 2.779 39.701 39.701 
2 1.595 22.784 62.485 1.595 22.784 62.485 
3 1.339 19.124 81.608 1.339 19.124 81.608 
4 0.855 12.218 93.826 0.855 12.218 93.826 
5 0.338 4.830 98.656 — — — 
6 0.083 1.181 99.836 — — — 
7 0.011 0.164 100.000 — — — 

Table 4. Component matrix. 

Parameter index 
Ingredients 

1 2 3 4 

Frequency domain average 0.659 -0.179 0.481 0.401 
Center of gravity frequency -0.664 0.171 0.683 0.165 
Mean square frequency -0.625 0.546 0.508 -0.094 
Frequency domain amplitude variance 0.853 0.430 0.213 -0.076 
Frequency domain amplitude standard deviation 0.866 0.426 0.197 -0.077 
Frequency domain amplitude deviation index -0.120 0.814 -0.367 -0.233 
Frequency domain amplitude kurtosis index -0.143 0.455 -0.405 0.770 
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The main formulas and fusion parameter formulas can be obtained from Table 3 and Table 4: 

1 1 2 3 4 5 6 70.695 -0.664 0.625 0.853 0.866 0.12 0.143F x x x x x x x= − + + − −    

2 1 2 3 4 5 6 70.179 0.171 0.546 0.43 0.426 0.814 0.455F x x x x x x x= − + + + + + +  

         3 1 2 3 4 5 6 70.481 0.683 0.508 0.213 0.197 0.367 0.405F x x x x x x x= + + + + − −               (12) 

4 1 2 3 4 5 6 70.401 0.165 0.094 0.076 0.077 0.233 0.77F x x x x x x x= + − − − − +  

1 2 3 439.701% 22.784% 19.124% 12.218%
93.826%

F F F FF + + +
=

 

The trend graph of the new frequency domain parameter variable F throughout the life cycle is 
shown in Figure 6. 

 

Figure 6. Trend of frequency domain synthesis parameter F. 

According to Figure 6, it can be seen that the frequency domain parameter index F extracted by 
PCA can divide the bearing state into four stages throughout the entire life cycle of the rolling bearings, 
and the values of each stage have significant differences. However, in the first stage, the rolling 
bearing has two states: running-in period and normal operation. The parameter index extracted in the 
frequency domain cannot effectively divide it. Therefore, considering only the frequency domain 
parameters has limitations. 

In order to make a better judgment of the entire life of the bearing, consider the joint analysis of 
time domain parameters and frequency domain parameters to make up for each other’s deficiencies, 
which can improve the accuracy of the parameter indicators to determine the life cycle of the bearings. 

5.4. Extraction of joint feature parameters in time domain and frequency domain 

When performing joint characteristic parameters in the time domain and frequency domain, the 
principal components are extracted simultaneously from 11 parameters in the time domain and 7 
parameters in the frequency domain. Then the PCA was performed by SPSS software. The results are 
shown in Table 5 and Table 6. 
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Table 5. Total variance explained. 

Ingredients 
Initial feature value Extract square and load 
Total Variance (%) Grand total (%) Total Variance (%) Grand total (%) 

1 5.665 31.474 31.474 5.665 31.474 31.474 
2 2.747 15.262 46.736 2.747 15.262 46.736 
3 2.355 13.086 59.822 2.355 13.086 59.822 
4 1.676 9.309 69.131 1.676 9.309 69.131 
5 1.494 8.302 77.433 1.494 8.302 77.433 
6 1.368 7.602 85.035 1.368 7.602 85.035 
7 0.958 5.322 90.357 — — — 
8 0.824 4.580 94.936 — — — 
9 0.363 2.016 96.953 — — — 
10 0.266 1.478 98.430 — — — 
11 0.146 0.811 99.241 — — — 
12 0.076 0.425 99.665 — — — 
13 0.024 0.134 99.800 — — — 
14 0.015 0.086 99.885 — — — 
15 0.013 0.075 99.960 — — — 
16 0.006 0.032 99.993 — — — 
17 0.001 0.007 100.000 — — — 
18 1.009E-013 1.048E-013 100.000 — — — 

Table 6. Component matrix. 

Parameter index 
Ingredients 

1 2 3 4 5 6 

Maximum value 0.980 0.032 -0.028 -0.025 0.031 -0.005 
Minimum value -0.881 0.088 0.354 0.069 -0.018 0.012 
Peak-to-peak value 0.956 -0.026 -0.187 -0.047 0.025 -0.009 
Mean value 0.385 0.189 0.580 -0.014 -0.209 0.039 
Variance 0.809 0.105 0.249 -0.073 -0.279 0.011 
Standard deviation 0.983 0.026 0.035 -0.076 -0.119 0.006 
RMS value 0.978 0.042 0.087 -0.076 -0.144 0.009 
Skewness 0.085 0.217 0.890 0.112 0.280 0.045 
Crest factor 0.394 0.054 -0.255 0.233 0.746 0.055 
Kurtosis value 0.300 0.181 -0.248 0.445 0.605 -0.037 
Degree of skewness 0.038 0.201 0.870 0.102 0.298 0.044 
Frequency domain average -0.014 -0.633 0.151 -0.150 0.117 0.501 
Center of gravity frequency -0.072 0.622 -0.153 0.076 -0.165 0.701 
Mean square frequency -0.038 0.615 -0.202 0.471 -0.209 0.514 
Frequency domain amplitude variance 0.124 -0.813 0.104 0.458 -0.123 0.215 
Frequency domain amplitude standard deviation 0.116 -0.826 0.111 0.456 -0.120 0.197 
Frequency domain amplitude deviation index 0.031 0.162 0.000 0.744 -0.301 -0.358 
Frequency domain amplitude kurtosis index -0.019 0.171 0.038 0.394 -0.206 -0.373 
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The main formulas and fusion parameter formulas can be obtained from Table 5 and Table 6: 

1 1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18

0.98 0.881 0.956 0.385 0.809 0.983 0.978
      0.085 0.394 0.300 0.038 0.014 0.072
      0.038 0.124 0.116 0.031 0.019

F x x x x x x x
x x x x x x
x x x x x

= − + + + + +
+ + + + − −
− + + + −

 

2 1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18

0.032 0.088 0.026 0.189 0.105 0.026 0.042
      0.217 0.054 0.181 0.201 0.633 0.622
      0.615 0.813 0.826 0.162 0.171

F x x x x x x x
x x x x x x
x x x x x

= + − + + + +
+ + + + − +
+ − − + +

 

3 1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 18

0.028 0.354 0.187 0.580 0.249 0.035 0.087
       0.890 0.255 0.248 0.870 0.151 0.153
       0.202 0.104 0.111 0.038

F x x x x x x x
x x x x x x
x x x x

= − + − + + + +
+ − − + + −
− + + +

 

 

4 1 2 3 4 5 6

8 9 10 11 12 13

14 15 16 17 18

0.025 0.069 0.047 0.014 0.073 0.076 0.076 7
       0.112 0.233 0.445 0.102 0.150 0.076
       0.471 0.458 0.456 0.744 0.394

F x x x x x x x
x x x x x x
x x x x x

= − + − − − − −
+ + + + − +
+ + + + +            

(13) 

5 1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18

0.031 0.018 0.025 0.209 0.279 0.119 0.144
      0.280 0.746 0.605 0.298 0.117 0.165
      0.209 0.123 0.120 0.301 0.206

xF x x x x x x
x x x x x x
x x x x x

= − + − − − −
+ + + + + −
− − − − −

 

6 1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18

0.005 0.012 0.009 0.039 0.011 0.006 0.009
       0.045 0.055 0.037 0.044 0.501 0.701
       0.514 0.215 0.197 0.358 0.373

F x x x x x x x
x x x x x x
x x x x x

= − + − + + + +
+ + − + + +
+ + + − −  

1 2 3 4

5 6

31.474% 15.262% 13.086% 9.309%
                    8.302% 7.602%

85.035%

F F F F
F F

F

+ + + 
 + + =

 

The running state trend diagram of the combined new parameter variable F in the whole life cycle 
of the rolling bearings is shown in Figure 7. 

 
Figure 7. Trend of joint time domain and frequency domain parameters F. 

Compared with Figure 5 and Figure 6, Figure 7 can combine the advantages of the two. 
According to the magnitude of the F amplitude, the entire trend graph can be divided into five stages. 
The amplitude of the first stage is less than 0. In the second stage, the amplitude of the first stable 
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period is around 0~0.3. It can be seen from the Figure 7 that the amplitude of the third stage is rising 
between 0.3~1.7. The fourth stage reaches the second stable amplitude of around 1.7~2.0. In the fifth 
stage, the amplitude is greater than 2.0, and the change drastically increased. It is consistent with the 
five life stages of the running-in period, normal operation, early failure, intermediate failure, and scrap 
phase of the rolling bearings, which proves that the feature parameter extraction is reasonable.  

6. Experimental verification 

Rolling bearings generally go through five stages of running-in period, stable period, pre-wear 
period, mid-wear period and scrap period during the whole life cycle. To verify the accuracy of the 
rolling bearing division in five different periods, several other groups of rolling bearings data in 
different periods are selected for inspection. The bearing type is N205EM, The experimental speed is 
1500 rpm. 

Figure 8 shows the new rolling bearing. Partial data during the running-in period of the rolling 
bearings without any external interference is shown in Table 7. 

Table 7. Rolling bearing running-in period operation data sheet. 

                 Bearing 

Parameter 
Bearing 1 Bearing 2 Bearing 3 Bearing 4 Bearing 5 Bearing 6 

Maximum value 0.331266 0.173247 0.113838 0.115207 0.183048 0.172044 

Minimum value -0.284857 -0.220233 -0.106962 -0.104506 -0.15264 -0.16943 

Variance 0.00253 0.001097 0.000323 0.000407 0.000944 0.001078 

Skewness 0.049057 -0.105746 -0.047372 -0.063308 0.013716 -0.00918 

Crest factor 6.585553 5.231315 6.331354 5.709636 5.956743 5.238983 

Kurtosis value 3.668997 3.732743 3.647081 3.518312 3.493974 3.588518 

Time domain synthesis parameters -0.49000 -0.56000 -0.22000 -0.27000 -0.16000 -0.22000 

Frequency domain average 2.420398 1.494328 1.551097 1.43708 2.382932 2.340677 

Center of gravity frequency 13107680 13107694 13107626 13107008 13107569 13107698 

Mean square frequency 242601 247075 249377 247021 247395 251026 

Frequency domain amplitude variance 19.77534 4.901701 8.630995 5.966292 24.76375 23.63791 

Frequency domain amplitude deviation 

index 
1.85948 3.4177 9.33689 1.76058 4.18591 3.81385 

Frequency domain amplitude kurtosis index 3.20801 1.65049 9.90682 3.4897 2.76785 2.01683 

Frequency domain synthesis parameters -0.21000 -0.75000 -0.52000 -1.17000 -0.05000 0.1000 

Time domain and frequency domain joint 

parameter F 
-0.33000 -0.62000 -0.77000 -0.58000 -0.26000 -0.11000 
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Figure 8. Normal operation of rolling bearing. 

It can be known from Table 7 that the parameters of rolling bearings changed greatly and showed 
irregular changes during this period. This is because the rolling bearings are brand new and need to be 
run-in when the rolling bearing is running. By comparing with Figure 7, the data in this period is more 
consistent with the curve data in the interval of 0–6370 min, and the F values are less than 0, so the 
interval 0–6370 min is defined as the running-in period of the rolling bearing. 

Some data parameters of rolling bearings after running for a period of time are shown in Table 8, 
which shows that the running state of the bearings during this period is relatively stable, and the value 
of each parameter changes little. Compared with Figure 7, it is consistent with the data in the period of 
6380–14400 min. The F values are between 0–0.3, so the time period of 6380–14400 min is defined as 
the normal operating state of the rolling bearings. 

Table 8. Rolling bearing normal operation data sheet. 

           Bearing 

Parameter 
Bearing 1 Bearing 2 Bearing 3 Bearing 4 Bearing 5 Bearing 6 

Maximum value 0.202636 0.162332 0.165347 0.173321 0.128705 0.164781 

Minimum value -0.212514 -0.16602 -0.163767 -0.156167 -0.166876 -0.154671 

Variance 0.001161 0.000971 0.000847 0.001087 0.000723 0.00075 

Skewness 0.055004 0.028093 -0.005417 -0.013408 -0.321766 -0.096294 

Crest factor 5.947209 5.210561 5.6803294 5.255964 4.786676 6.017099 

Kurtosis value 3.256261 3.155725 3.140202 3.210032 3.4795607 3.449157 

Time domain synthesis parameters -0.11000 -0.19000 -0.170000 -0.22000 -0.400000 -0.190000 

Frequency domain average 2.387279 2.000238 2.163854 1.361317 1.36316 1.707661 

Center of gravity frequency 13107628 13107621 13107658 13106047 13107476 13107442 

Mean square frequency 248774 255028 254376 267288 260661 259947 

Frequency domain amplitude variance 24.41027 18.96061 21.95848 20.43021 17.31165 16.62991 

Frequency domain amplitude deviation index 5.57064 4.54627 4.48288 1.22736 1.48396 7.77227 

Frequency domain amplitude kurtosis index 4.00467 2.17408 2.07188 1.21409 1.81681 5.57238 

Frequency domain synthesis parameters 0.01000 -0.04000 0.08000 -0.97000 -0.12000 -0.15000 

Time domain and frequency domain joint parameter F 0.04000 0.07000 0.02000 0.09000 0.11000 0.08000 
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After the wear period and the stable operation period, in order to accelerate the change of the 
bearing life state, the artificially manufactured weak fault is shown in Figure 9. The size of the fault is 
1.5 mm wide and 0.3 mm deep, which achieved early fault effects for experimental inspection. The 
experimental data are shown in Table 9. 

Through the analysis of experimental data table 9 and Figure 7, we find that the running data of 
the rolling bearings change greatly during this period, and the amplitude is increasing. This is because 
the bearings are in a weak fault period, some parameters are more sensitive to the weak change of the 
fault. The experimental running data is in good agreement with the graph in the period from 14410 to 
25680 minutes, and the F values are between 0.3 and 1.7, which can be regarded as a weak failure 
period of the rolling bearings. 

 

Figure 9. Early fault bearing. 

Table 9. Rolling bearing early fault operation data sheet. 

                Bearing 

Parameter 
Bearing 1 Bearing 2 Bearing 3 Bearing 4 Bearing 5 Bearing 6 

Maximum value 0.136928 0.171925 0.10094 0.126128 0.285772 0.195407 

Minimum value -0.166927 -0.158232 -0.105178 -0.19991 -0.276312 -0.29886 

Variance 0.000698 0.000707 0.000314 0.000492 0.000725 0.000657 

Skewness -0.064688 -0.083701 0.0864115 -0.331124 -0.360702 -0.480002 

Crest factor 5.184182 6.467023 5.699646 5.685521 10.59265 7.622499 

Kurtosis value 4.6170366 4.705728 3.797344 5.040614 9.541568 10.32127 

Time domain synthesis parameters -0.24000 -0.16000 -0.17000 -0.38000 0.16000 -0.21000 

Frequency domain average 1.780924 1.712819 1.948742 1.94679 2.023343 1.514255 

Center of gravity frequency 13107426 13107527 13107425 13107306 13107348 13107356 

Mean square frequency 257100 238327 246384 249538 247544 159459 

Frequency domain amplitude variance 18.86637 5.100236 9.826832 11.89232 11.62938 9.73649 

Frequency domain amplitude deviation 

index 
1.02093 1.70887 4.09601 3.5925 3.02614 4.17108 

Frequency domain amplitude kurtosis index 9.85949 3.3904 2.21923 1.46234 8.53256 1.68545 

Frequency domain synthesis parameters -0.16000 5.39000 4.21000 3.46000 10.53000 3.68000 

Time domain and frequency domain joint 

parameter F 
0.39000 0.58000 0.85000 1.05000 0.12000 1.26000 
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The weak fault of the rolling bearings is further enlarged as shown in Figure 10. At this point, the 
fault size of the rolling bearings is 1.5 mm wide and 0.5 mm deep, which achieves the mid-term failure 
effect for experimental inspection. The experimental data is shown in Table 10. 

 

Figure 10. Medium-term fault bearing. 

Table 10. Rolling bearing medium-term fault operation data. 

                Bearing 

Parameter 
Bearing 1 Bearing 2 Bearing 3 Bearing 4 Bearing 5 Bearing 6 

Maximum value 0.266835 0.266961 0.295686 0.252149 0.220223 0.233308 

Minimum value -0.30422 -0.281781 -0.353835 -0.256819 0.232719 -0.229089 

Variance 0.001884 0.001538 0.002079 0.00122 0.00225 0.00125 

Skewness -0.000916 0.0003904 0.001545 -0.109245 -0.14790 -0.030627 

Crest factor 6.1473811 6.807178 6.484634 7.217894 6.292714 6.599002 

Kurtosis value 4.5581382 4.084713 5.0260825 4.1980203 4.074858 3.7748344 

Time domain synthesis parameters -0.05000 -0.04000 0.01000 -0.10000 -0.20000 -0.11000 

Frequency domain average 3.793162 3.551865 3.865041 3.185822 3.353207 3.210801 

Center of gravity frequency 13107535 13107557 13107519 13107456 13107463 13107377 

Mean square frequency 240223 238722 243022 242403 236729 236386 

Frequency domain amplitude variance 33.18258 24.94688 35.34664 19.82426 20.9332 20.028836 

Frequency domain amplitude 

deviation index 
2.81308 1.87654 2.14689 1.65154 1.49124 1.40468 

Frequency domain amplitude kurtosis 

index 
1.06817 4.48216 5.7188 3.35747 2.36756 1.810964 

Frequency domain synthesis 

parameters 
3.06000 6.48000 7.71000 5.35000 4.36000 3.81000 

Time domain and frequency domain 

joint parameter F 
1.85000 1.87000 1.89000 1.82000 1.92000 1.84000 

After the bearings have experienced a weak failure, the wear degree of bearings has reached a 
relatively stable level. Therefore, the fluctuation of the parameters amplitude during this period is 
small, and the F value is fixed around 1.7–2. It is not difficult to analyze Table 10 and Figure 7 to find 
that the data in this period is consistent with 25690–35230min, which is called the middle stage of 
failure. 
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After the middle stage of the failure, the bearing operating state will enter the scrap period. In 
order to test the validity of the new parameters during this period, the fault location of the experimental 
bearing is further deepened, which reaches 4 mm wide and 1 mm deep. The bearing failure is shown in 
Figure 11, and the data of the experimental operation is shown in Table 11. 

Table 11. Rolling bearing end-of-life operating data. 

                Bearing 

Parameter 
Bearing 1 Bearing 2 Bearing 3 Bearing 4 Bearing 5 Bearing 6 

Maximum value 0.282937 0.243594 0.251703 0.44677 0.254331 0.15692 

Minimum value -0.268219 -0.254591 -0.283827 -0.410939 -0.191041 -0.153541 

Variance 0.001693 0.001728 0.001806 0.002707 0.001436 0.000826 

Skewness -0.008151 -0.019024 -0.010563 0.381017 0.220984 -0.01772 

Crest factor 6.876692 5.8600701 5.922669 8.586306 6.711062 5.4597156 

Kurtosis value 3.656453 3.5916421 3.7451012 3.9067776 4.0683312 3.3649503 

Time domain synthesis parameters -0.05000 0.14000 -0.11000 0.54000 0.09000 -0.23000 

Frequency domain average 3.72384 3.987033 2.00286 2.646099 2.754702 2.463502 

Center of gravity frequency 13107391 13107499 13107348 13107527 13107482 13107654 

Mean square frequency 240706 235222 265975 242920 241495 241769 

Frequency domain amplitude variance 27.61894 28.94823 27.41521 16.54646 15.86649 20.45943 

Frequency domain amplitude deviation 

index 
1.95003 1.21156 1.02968 4.3311 3.96914 1.73312 

Frequency domain amplitude kurtosis 

index 
4.76684 1.52744 1.1359 2.17821 2.36453 2.3955 

Frequency domain synthesis parameters 6.67000 3.51000 3.13000 4.17821 4.36453 4.3955 

Time domain and frequency domain joint 

parameter F 
2.17000 2.73000 3.05000 3.61000 4.02000 4.33000 

 

 

Figure 11. Fault bearing in the end of life. 

At this stage, rolling bearings failure is obvious. The parameter value is relatively large and the 
size is unstable. It is found through observation that when the time is 35240–48700 min in Figure 7, the 
data is similar to Table 11 and the F values are greater than 2, which is defined as the bearing scrap 
period. 
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Based on the abovementioned, the quantitative standard of F values can be shown in Table 12. 

Table 12. New parameter F determines the quantitative standard of rolling bearing life state. 

Period 0~6370min 6380~14400min 14410~25680min 25690~35230min 35240~48700min 

Operating 
status 

Run-in 
period 

Stable period Early fault Medium-term 
fault 

Scrap period fault 

F value <0 0~0.3 0.3~1.7 1.7~2 >2 

Data 
characteristics 

First down 
then up 

Stable Gradually rising Stable Rise sharply 

7. Conclusion 

The principal component analysis (PCA) is proposed to extract a new indicator in this paper 
which is the joint parameters of time domain and frequency domain. By using the new indicator of 
rolling bearings during operation, the operating conditions of rolling bearings can be clearly classified 
to five life stages: the running-in period, normal operation, early failure, intermediate failure, and scrap 
phase of the rolling bearings. And the classification results are basically consistent with the running 
status of the bearings. Therefore, it is feasible to use the PCA to carry out on-line monitoring and 
running status research of bearings. 
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