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Abstract: Nonlinear evolution equations (NLEEs) of fractional order play important role to explain
the inner mechanisms of complex phenomena in various fields of the real world. In this article,
nonlinear evolution equations of fractional order; namely, the (3+1)-dimensional space-time fractional
modified KdV-Zakharov-Kuznetsov equation, the time fractional biological population model and the
space-time fractional modified regularized long-wave equation are revealed for seeking closed form
analytic solutions. The offered equations are first transformed into ordinary differential equations
of integer order with the help of a suitable composite transformation and the conformable fractional
derivative. Then the rational (G′/G)-expansion method, which is reliable, efficient and computationally
attractive, is employed to construct the traveling wave solutions successfully. The obtained solutions
are appeared to be exact, much more new and general than the existing results in the literature.
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1. Introduction

Noticeable natural complex phenomena of the real world are described and formulated in the
course of the differential equations. Fractional calculus has drawn the great interest of many
researchers for their importance to depict the inner mechanisms of various complex physical
phenomena of real world in broad sense. The fractional order nonlinear partial differential equations
are more effective to explain widely the mechanisms of the nature of world than the classical
differential equations of integer order. That is why; many researchers have recently paid deep
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attention to seek for the exact solutions to the nonlinear evolution equations (NLEEs) of fractional
order. The study for revealing fractional order NLEEs is mainly due to their important appearance in
different fields such as biology, physics, engineering, signal processing, systems identification, control
theory, the finance, fractal dynamics and many other areas of science [1–5]. Several productive
methods have been put forward to construct closed form analytic solutions to NLEEs of fractional
order; namely the (G′/G)-expansion method and it’s various modifications [6–10], the sub-equation
method [11,12], the exp-function method [13,14], the first integral method [15,16], the functional
variable method [17], the modified trial equation method [18,19], the simplest equation method [20],
the Lie group analysis method [21], the characteristics method [22], the auxiliary equation
method [23,24], the finite difference method [25], the finite element method [26], the differential
transform method [27], the homotopy perturbation method [28], the Adomian decomposition
method [29,30], the variational iteration method [31], the Tzou and Stehfest’s algorithm [45], the
spectral Gelarkin method [46], modified logistic model [47] and others [48–51].

The fractional order NLEEs can depict the physical phenomena more accurately than that of the
integer order NLEEs [1–3,5]. Consequently, the aim of this study is to construct new and further
general closed form analytic wave solutions to the fractional order nonlinear evolution equations
mentioned above in the sense of fractional derivative. Sousa and Oliveira have recently introduced
new fractional derivatives [52,53]. There are also some definitions of fractional derivative in
fractional calculus. Some of them are given below:

(i) The derivative of non-integer order defined by Caputo [42] is

Dα
x f (x) =

1
Γ(n − α)

∫ x

0
(x − t)n−α−1 dn f (t)

dtn dt

(ii) Riemann-Liouville fractional derivative is given as [42]

Dα
x f (x) =

1
Γ(n − α)

dn

dtn

∫ x

0
(x − t)n−α−1 f (t)dt

This definition is modified by Jumarie as [43]

Dα
x f (x) =

1
Γ(n − α)

dn

dtn

∫ x

0
(x − t)n−α−1{ f (t) − f (0)}dt

(iii) Ji-Huan He introduced the fractional derivative [44]

Dα
t f (x) =

1
Γ(n − α)

dn

dtn

∫ t

t0
(s − t)n−α−1{ f0(s) − f (s)}ds,

where f0(x) is a known function.
(iv) The conformable fractional derivative of order α is defined as follows [32]:

Tα( f )(t) = lim
ε→0

f (t + ε t1−α) − f (t)
ε

, t > 0, α ∈ (0, 1].

If the above limit exists, then f is called α-differentiable. Let α ∈ (0, 1] and f , g be α-differentiable
at a point t > 0, then Tα satisfies the following properties:
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(i) Tα(a f + b g) = aTα( f ) + bTα(g), for all a, b ∈ R
(ii) Tα(tp) = ptp−α, for all p ∈ R
(iii) Tα(λ) = 0, for all constant functions f (t) = λ

(iv) Tα( f g) = f Tα(g) + g Tα( f )
(v) Tα( f /g) = {g Tα( f ) − f Tα(g)}/g2

(vi) If, in addition, f is differentiable, then Tα( f )(t) = t1−α d f
dt (t).

In this article, the rational (G′/G)-expansion method [33] is used for searching the exact analytic
traveling wave solutions to the suggested equations in the sense of conformable fractional
derivative [32].

2. Description of the rational (G′/G)-expansion method

Consider the following nonlinear evolution equation of fractional order in the independent variables
t, x1, x2, ..., xn:

F(u1, ..., uk,
∂u1

∂t
, ...,

∂uk

∂t
,
∂u1

∂x1
, ...,

∂uk

∂x1
, ...,

∂u1

∂xn
, ...,

∂uk

∂xn
,

Dα
t u1, ...,Dα

t uk, Dβ
x1

u1, ..., Dβ
x1

uk, ..., Dβ
xn

u1, ..., Dβ
xn

uk, ...) = 0, (2.1)

where ui = ui(t, x1, x2, ..., xn), i = 1, ..., k are unknown functions, F is a polynomial in ui and it’s
various partial derivatives including the derivatives of fractional order.

Now, the main steps of the rational (G′/G)-expansion method are presented as follows:
Step 1: Making use of the traveling wave variable [34]

ξ = ξ(t, x1, x2, ..., xn), ui = ui(t, x1, x2, ..., xn) = Ui(ξ), (2.2)

where t is the temporal variable and x′i s are the spatial variables and ξ is called wave variable, Eq. (2.1)
is turned into the following ordinary differential equation of integer order with respect to the variable
ξ:

Q (U1, ..., Uk, U′1, ..., U′k, U′′11, ..., U′′k k, ...) = 0. (2.3)

Step 2: If possible take anti-derivative of Eq. (2.3) one or more times and integral constant can be set
to zero as soliton solutions are hunted.

Step 3: Suppose the solution of Eq. (2.3) can be expressed as,

u (ξ) =
a0 + a1(G′/G) + a2(G′/G)2 + · · · + an(G′/G)n

b0 + b1(G′/G) + b2(G′/G)2 + · · · + bn(G′/G)n , (2.4)

where ai, bi (i = 0, 1, 2, ..., n ) are constants with at least one of an and bn is non-zero, while G(ξ)
satisfies the following second order linear ordinary differential equation:

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (2.5)

where λ and µ are real parameters.
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Eq. (2.5) provides the solutions,

(
G′

G

)
=


−λ2 +

√
λ2−4µ
2

C1 sinh(
√
λ2−4µ /2)ξ+C2 cosh(

√
λ2−4µ /2) ξ

C1 cosh(
√
λ2−4µ /2) ξ+C2 sinh(

√
λ2−4µ /2) ξ

, λ2 − 4µ > 0

−λ2 +

√
4µ−λ2

2
−C1 sin(

√
4µ−λ2 /2)ξ+C2 cos(

√
4µ−λ2 /2)ξ

C1 cos(
√

4µ−λ2 /2) ξ+C2 sin(
√

4µ−λ2 /2) ξ
, λ2 − 4µ < 0

−λ2 + C2
C1+C2ξ

, λ2 − 4µ = 0

(2.6)

where C1 and C2 are arbitrary constants.

Step 4: The positive integer n in Eq. (2.4) is fixed by taking homogeneous balance between the
highest order derivative terms and the nonlinear terms in Eq. (2.3).

Step 5: Substituting Eq. (2.4) together with Eq. (2.5) into Eq. (2.3), we obtain a polynomial in
(G′/G). By equating each coefficient of this polynomial to zero yields a set of algebraic equations for
ai, bi (i = 0, 1, 2, ..., n ),λ and µ. Solve this set of equations by the symbolic computation software,
such as Maple for the parameters ai, bi (i = 0, 1, 2, ..., n ),λ and µ.

Step 6: Using the values of ai, bi (i = 0, 1, 2, ..., n ),λ and µ obtained in step 5 together with Eq.
(2.6) into Eq. (2.4) provide the closed form traveling wave solutions of the nonlinear fractional partial
differential Eq. (2.1).

3. Formulation of the solutions

In this section, the rational (G′/G)-expansion method is employed to derive the exact analytic
solitary wave solutions to the (3+1)-dimensional space-time fractional mKdV-ZK equation, the time
fractional biological population model and the space-time fractional modified regularized long-wave
equation.

3.1. The (3+1)-dimensional space-time fractional mKdV-ZK equation

Consider the (3+1)-dimensional space-time fractional mKdV-ZK equation

Dα
t u + δ u2Dα

x u + D3α
x u + Dα

x D2α
y u + Dα

x D2α
z u = 0, 0 < α ≤ 1, (3.1)

which is in the sense of conformable fractional derivative and δ is nonzero real constant. This
equation is derived for plasma comprised of cool and hot electrons and a species of fluid ions [35].

The fractional complex transformation

u(x, y, z, t) = u (ξ), ξ =
1
α
{l xα + m yα + n zα − ω tα}, (3.2)

where l, m, n and ω are non-zero parameters, reduces Eq. (3.1) to the following ordinary differential
equation with respect to the variable ξ:

− ω u′ + δ l u2u′ + (l3 + l m2 + l n2)u′′′ = 0. (3.3)
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The anti-derivative of Eq. (3.3) with integral constant zero gives

− ω u +
δ l
3

u3 + (l3 + l m2 + l n2)u′′ = 0. (3.4)

Due to the homogeneous balance between u3 and u′′ the solution Eq. (2.4) takes the form

u (ξ) =
a0 + a1(G′/G)
b0 + b1(G′/G)

, (3.5)

with at least one of a1 and b1 is non-zero.

The substitution of Eq. (3.5) with the help of Eq. (2.5) into Eq. (3.4) yields a polynomial in (G′/G).
Setting like terms of this polynomial to zero makes available a set of algebraic equations for
a0, a1, b0, b1, ω, λ and µ. Solving these equations by Maple gives the following set of solutions:

Set-1: a0 = ± 1
2δ (2b1µ − b0λ)

√
−6δ(l2 + m2 + n2), a1 = ± 1

2δ (b1λ − 2b0)
√
−6δ(l2 + m2 + n2),

ω =
l
2

(4µ − λ2)(l2 + m2 + n2), δ , 0, (3.6)

where b0, b1, λ and µ are arbitrary constants.

Set-2: a0 = ± b1
4δ (λ

2 − 4µ + λ
√

4µ − λ2)
√
−6δ(l2 + m2 + n2), b0 = b1

2 (λ +
√

4µ − λ2),

a1 = ±
b1

2δ

√
−6δ(l2 + m2 + n2)(4µ − λ2), ω =

l
2

(4µ − λ2)(l2 + m2 + n2), δ , 0, (3.7)

where b1, λ and µ are arbitrary constants.

Set-3: a0 = ±
b1(4µ−λ2)

√
−6δ(l2+m2+n2)
4δ , ω = l

2 (4µ − λ2)(l2 + m2 + n2), a1 = 0,

b0 =
1
2

b1λ, δ , 0, (3.8)

where b1, λ and µ are arbitrary constants.

Set-4: a0 = ±b0λ
2δ

√
−6δ(l2 + m2 + n2), a1 = ±b0

δ

√
−6δ(l2 + m2 + n2), b1 = 0,

ω =
l
2

(4µ − λ2)(l2 + m2 + n2), δ , 0, (3.9)

where b0, λ and µ are arbitrary constants.

Using Eqs. (3.6)–(3.9) in Eq. (3.5) possess the following respective results:

u1 (ξ) = ±
√
−6δ(l2 + m2 + n2) ×

(b1λ − 2b0) + (2b1µ − b0λ)(G′/G)
2δ {b0 + b1(G′/G)}

, (3.10)
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u2 (ξ) =
±(λ2 − 4µ + λ

√
4µ − λ2)

√
−6δ(l2 + m2 + n2) ± 2

√
−6δ(l2 + m2 + n2)(4µ − λ2)(G′/G)

2δ(λ +
√

4µ − λ2) + 2(G′/G)
,

(3.11)

u3 (ξ) =
±(4µ − λ2)

√
−6δ(l2 + m2 + n2)

2δ{λ + 2(G′/G)}
, (3.12)

u4 (ξ) = ±
λ

2δ

√
−6δ(l2 + m2 + n2) ±

1
δ

√
−6δ(l2 + m2 + n2)(G′/G), (3.13)

where ξ = 1
2α {2(l xα + m yα + n zα) − l(4µ − λ2)(l2 + m2 + n2) tα}.

Eq. (3.10) with the aid of Eq. (2.6) grants three types of traveling wave solutions of Eq. (2.1) as
follows:
When λ2 − 4µ > 0, the expression for the hyperbolic function solution is

u1
1 (ξ) =

√
−6δ(l2 + m2 + n2)

2δ
×

±(b1λ − 2b0) ± (2b1µ − b0λ)(
−λ2 +

√
λ2−4µ
2

C1 sinh(
√
λ2−4µ /2)ξ+C2 cosh(

√
λ2−4µ /2) ξ

C1 cosh(
√
λ2−4µ /2) ξ+C2 sinh(

√
λ2−4µ /2) ξ

)
b0 + b1

(
−λ2 +

√
λ2−4µ
2

C1 sinh(
√
λ2−4µ /2)ξ+C2 cosh(

√
λ2−4µ /2) ξ

C1 cosh(
√
λ2−4µ /2) ξ+C2 sinh(

√
λ2−4µ /2) ξ

) . (3.14)

In particular case, for C1 , 0, C2 = 0 Eq. (3.14) becomes

u1
1 (ξ) = ±

√
−6δ(l2 + m2 + n2)

4δ
×

2(b1λ − 2b0) − (2b1µ − b0λ){λ −
√
λ2 − 4µ tanh(

√
λ2 − 4µ /2)ξ}

2b0 − b1{λ −
√
λ2 − 4µ tanh(

√
λ2 − 4µ /2)ξ}

,

(3.15)
where ξ = 1

2α {2(l xα + m yα + n zα) − l(4µ − λ2)(l2 + m2 + n2) tα}.

When λ2 − 4µ < 0, the trigonometric function solution is gained as

u2
1 (ξ) =

√
−6δ(l2 + m2 + n2)

2δ
×

±(b1λ − 2b0) ± (2b1µ − b0λ)(
−λ2 +

√
4µ−λ2

2
−C1 sin(

√
4µ−λ2 /2)ξ+C2 cos(

√
4µ−λ2 /2) ξ

C1 cos(
√

4µ−λ2 /2) ξ+C2 sin(
√

4µ−λ2 /2) ξ

)
b0 + b1

(
−λ2 +

√
4µ−λ2

2
−C1 sin(

√
4µ−λ2 /2)ξ+C2 cos(

√
4µ−λ2 /2) ξ

C1 cos(
√

4µ−λ2 /2) ξ+C2 sin(
√

4µ−λ2 /2) ξ

) . (3.16)

For particular case, if we choose C1 , 0, C2 = 0 Eq. (3.16) turns into

u2
1 (ξ) = ±

√
−6δ(l2 + m2 + n2)

4δ
×

2(b1λ − 2b0) − (2b1µ − b0λ){λ +
√

4µ − λ2 tan(
√

4µ − λ2 /2)ξ}

2b0 − b1{λ +
√

4µ − λ2 tan(
√

4µ − λ2 /2)ξ}
,

(3.17)
where ξ = 1

2α {2(l xα + m yα + n zα) − l(4µ − λ2)(l2 + m2 + n2) tα}.
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The above acquired closed form solutions to the nonlinear space-time fractional mKdV-ZK equation
are new and more general. If we choose b1 = 0, the solutions (3.15) and (3.17) coincide with those
constructed by the (G′/G)-expansion method [36]. Furthermore, Eqs. (3.11)-(3.13) under the same
procedure as above also provide much more new and general solutions which are not recorded here to
keep the readers away from the inconvenience.

3.2. The time fractional biological population model

The nonlinear time fractional biological population model is

Dα
t u − D2

xu − D2
yu − ρ(u2 − η) = 0, 0 < α ≤ 1, (3.18)

where ρ, η are constants, u represents the population density and ρ(u2 − η) represents the population
supply due to births and deaths. A biological population model is a mathematical model which helps
us to understand the dynamical procedure of population changes and provides valuable predictions.
The universe that range from simple to dynamic is full of interactions. Most of the earth’s processes
affect human life. Procedures in population modeling have significantly enhanced our understanding
of biology and the natural world. A population model that is applied to the study of population
dynamics is a type of mathematical model which provides us a good understanding of how
complicated interactions and procedures work.

Making use of the fractional compound transformation

u(x, y, t) = u (ξ), ξ = k x + i k y −
c tα

α
, i2 = −1 (3.19)

Eq. (3.18) is converted into the integer order ODE,

− c u′ − ρ(u2 − η) = 0. (3.20)

Balancing the highest order derivative and the nonlinear term appearing in Eq. (3.20), the solution Eq.
(2.4) reduces to the form

u (ξ) =
a0 + a1 (G′/G)
b0 + b1 (G′/G)

, (3.21)

where at least one of a1 and b1 is nonzero.
Substituting Eq. (3.21) along with Eq. (2.5) into Eq. (3.20) yields a polynomial in (G′/G). Setting each
coefficient of this polynomial to zero, offered a system of algebraic equations for a0, a1, b0, b1, c, λ
and µ. Solving this set of equations with the aid of computer algebra, like Maple, provides the following
results:

a0 =
b1

2c
(2ρη ±

√
ηcλ), a1 = ±

√
ηb1, b0 =

b1

2c
(cλ ± 2p

√
η), c , 0, (3.22)

where b1, c and λ are arbitrary constants.

Inserting the values appearing in Eq. (3.22) into Eq. (3.21) possesses

u(ξ) =
(2ρη ±

√
ηcλ) ± 2c

√
η(G′/G)

(cλ ± 2ρ
√
η) + 2c(G′/G)

, (3.23)
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where ξ = k x + i k y − c tα
α

, i2 = −1.

Eq. (3.23) along with Eq. (2.6) makes available the following three types of closed form traveling
wave solutions:
When λ2 − 4µ > 0, the hyperbolic function solution is gained as

u1(ξ) =

(2ρη ±
√
ηcλ) ± 2c

√
η

(
−λ2 +

√
λ2−4µ
2

C1 sinh(
√
λ2−4µ /2)ξ+C2 cosh(

√
λ2−4µ /2) ξ

C1 cosh(
√
λ2−4µ /2) ξ+C2 sinh(

√
λ2−4µ /2) ξ

)
(cλ ± 2ρ

√
η) + 2c

(
−λ2 +

√
λ2−4µ
2

C1 sinh(
√
λ2−4µ /2)ξ+C2 cosh(

√
λ2−4µ /2) ξ

C1 cosh(
√
λ2−4µ /2) ξ+C2 sinh(

√
λ2−4µ /2) ξ

) . (3.24)

We might choose the arbitrary constants as C1 = r1 cosh θ, C2 = r1 sinh θ in Eq. (3.24) and simplify
the solution to

u1(ξ) =
2ρη ± r1c

√
η(λ2 − 4µ) tanh{(

√
λ2 − 4µ /2)ξ + θ}

±2ρ
√
η + cr1

√
λ2 − 4µ tanh{(

√
λ2 − 4µ /2)ξ + θ}

, (3.25)

where r1 =

√
C2

1 −C2
2, θ = tanh−1(C2/C1) and ξ = k x + i k y − c tα

α
, i2 = −1.

For λ2 − 4µ < 0, the trigonometric function solution is found as follows:

u2(ξ) =

(2ρη ±
√
ηcλ) ± 2c

√
η

(
−λ2 +

√
4µ−λ2

2
−C1 sin(

√
4µ−λ2 /2)ξ+C2 cos(

√
4µ−λ2 /2) ξ

C1 cos(
√

4µ−λ2 /2) ξ+C2 sin(
√

4µ−λ2 /2) ξ

)
(cλ ± 2ρ

√
η) + 2c

(
−λ2 +

√
4µ−λ2

2
−C1 sin(

√
4µ−λ2 /2)ξ+C2 cos(

√
4µ−λ2 /2) ξ

C1 cos(
√

4µ−λ2 /2) ξ+C2 sin(
√

4µ−λ2 /2) ξ

) . (3.26)

If the arbitrary constants are assigned as C1 = r2 cos φ, C2 = r2 sin φ in Eq. (3.26), then it becomes to
the simplest form

u2(ξ) =
2ρη ∓ cr2

√
η(4µ − λ2) tan{(

√
4µ − λ2 /2)ξ − φ}

±2ρ
√
η − cr2

√
4µ − λ2 tan{(

√
4µ − λ2 /2)ξ − φ}

, (3.27)

where r2 =

√
C2

1 −C2
2, φ = tanh−1(C2/C1) and ξ = k x + i k y − c tα

α
, i2 = −1.

If λ2 − 4µ = 0, the rational function solution is

u3(ξ) =
(2ρη ±

√
ηcλ) ± 2c

√
η
(
−λ2 + C2

C1+C2ξ

)
(cλ ± 2ρ

√
η) + 2c

(
−λ2 + C2

C1+C2ξ

) . (3.28)

In particular, for C1 = 0 Eq. (3.26) becomes

u3(ξ) =
2ρηξ ± 2c

√
η

2c ± 2ρ
√
ηξ

, (3.29)

where ξ = k x + i k y − c tα
α

, i2 = −1.

The exact solutions obtained above to the biological population model are new and general. Abdel
Salam and Gumma [37] constructed two traveling wave solutions in terms of hyperbolic function only.
But we gained six closed form traveling wave solutions in terms of hyperbolic function, trigonometric
function and rational function. So far we hunt; no one achieved these results ever.
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3.3. The space-time fractional modified regularized long-wave equation

The following nonlinear space-time fractional modified regularized long-wave equation is
considered to be examined for further exact traveling wave solutions:

Dα
t u + δDα

x u + τ u2Dα
x u − ηDα

t D2α
x = 0, 0 < α ≤ 1 (3.30)

where δ, τ and η are all constants. This equation proposed by Benjamin et al. to describe
approximately the unidirectional propagation of long waves in certain dispersive systems is supposed
to be alternative to the modified KdV equation. Eq. (3.30) is formulated to demonstrate some physical
phenomena like transverse waves in shallow water and magneto hydrodynamic waves in plasma and
photon packets in nonlinear crystals [38–40].

The wave variable transformation

u(x, t) = u (ξ), ξ =
xα

α
−

c tα

α
, (3.31)

reduces Eq. (3.30) to the ODE
(δ − c)u′ + τ u2u′ + c η u′′′ = 0. (3.32)

Integrating Eq. (3.32) and setting integral constant to zero gives

(δ − c)u +
τ

3
u3 + c η u′′ = 0. (3.33)

Considering homogeneous balance for Eq. (3.33) the solution Eq. (2.4) is appeared as

u(ξ) =
a0 + a1 (G′/G)
b0 + b1 (G′/G)

(3.34)

in which at least one of a1 and b1 is nonzero.

Put Eq. (3.34) with the help of Eq. (2.5) in Eq. (3.33); collect the coefficients of like powers of
(G′/G) and equate them to zero we obtain a set of equations for a0, a1, b0, b1, c, λ and µ.
Calculating these equations by Maple gives the results

Set-1:

a0 = ±

√
3δη(2b1µ − b0λ)√
τ(4µη − λ2η − 2)

, a1 = ∓

√
3δη(2b0 − b1λ)√
τ(4µη − λ2η − 2)

, c = −
2δ

4µη − λ2η − 2
, (3.35)

where b0, b1, λ and µ are arbitrary constants.

Set-2:

a0 = ±
b1

√
3δη(4µ − λ2)

2
√
τ(4µη − λ2η − 2)

, a1 = 0, b0 =
1
2

b1λ, c = −
2δ

4µη − λ2η − 2
, (3.36)

where b1, λ and µ are arbitrary constants.
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Set-3:

a0 = ±
b0λ

√
3δη√

τ(4µη − λ2η − 2)
, a1 = ±

2
√

3δηb0√
τ(4µη − λ2η − 2)

, b1 = 0, c = −
2δ

4µη − λ2η − 2
, (3.37)

where b0, λ and µ are arbitrary constants.

Set-4:
a0 = ±

b1δ{(4µ−λ2)(λη±
√

6η−3η2(4µ−λ2))−2λ}
√
−δτ(4µη−λ2η−2)

, a1 = ± b1δ√
−δτ

,

b0 =
b1

6η
{3ηλ ±

√
6η − 3η2(4µ − λ2)}, c = −

2δ
4µη − λ2η − 2

, (3.38)

where b1, λ and µ are arbitrary constants.

Utilizing the values appeared in Eqs. (3.35)–(3.38), the Eq. (3.34) provide the following expressions
for desired solutions:

u1(ξ) =

√
3δη√

τ(4µη − λ2η − 2)
×
±(2b1µ − b0λ) ∓ (2b0 − b1λ) (G′/G)

b0 + b1 (G′/G)
, (3.39)

u2(ξ) = ±

√
3δη(4µ − λ2)√

τ(4µη − λ2η − 2)
×

1
λ + 2 (G′/G)

, (3.40)

u3(ξ) = ±

√
3δη√

τ(4µη − λ2η − 2)
× {λ + 2(G′/G)}, (3.41)

u4(ξ) =
6ηδ

√
−δτ(4µη−λ2η−2)

×
±{(4µ−λ2)(λη±

√
6η−3η2(4µ−λ2))−2λ}± (4µη−λ2η−2)(G′/G)

{3ηλ±
√

6η−3η2(4µ−λ2)}+6η(G′/G)

, (3.42)

where ξ = xα
α

+ 2δ tα
α(4µη−λ2η−2) .

Each of Eqs. (3.39)–(3.42) together with Eq. (2.6) makes available exact traveling wave solutions to
the space-time fractional modified regularized long-wave equation of three types, such as hyperbolic
function solution, trigonometric function solution and rational function solution. For convenience of
the readers, we record here the solutions only for Eq. (3.39) as follows:

When λ2 − 4µ > 0, the hyperbolic function solution is formed as follows:

u1
1(ξ) =

√
3δη

√
τ(4µη−λ2η−2)

×
±(2b1µ−b0λ)∓(2b0−b1λ)

(
− λ2 +

√
λ2−4µ

2
C1 sinh(

√
λ2−4µ /2)ξ+C2 cosh(

√
λ2−4µ /2) ξ

C1 cosh(
√
λ2−4µ /2) ξ+C2 sinh(

√
λ2−4µ /2) ξ

)
b0+b1

(
− λ2 +

√
λ2−4µ

2
C1 sinh(

√
λ2−4µ /2)ξ+C2 cosh(

√
λ2−4µ /2) ξ

C1 cosh(
√
λ2−4µ /2) ξ+C2 sinh(

√
λ2−4µ /2) ξ

) . (3.43)
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Assigning the arbitrary constants as C1 , 0, C2 = 0 to Eq. (3.43) and simplifying one may obtain

u1
1(ξ) =

√
3δη√

τ(4µη − λ2η − 2)
×
±2(2b1µ − b0λ) ± (2b0 − b1λ) {λ −

√
λ2 − 4µ tanh(

√
λ2 − 4µ /2)ξ}

2b0 − b1{λ −
√
λ2 − 4µ tanh(

√
λ2 − 4µ /2)ξ}

,

(3.44)
where ξ = xα

α
+ 2δ tα

α(4µη−λ2η−2)α .

When λ2 − 4µ < 0, the trigonometric function solution is

u2
1(ξ) =

√
3δη

√
τ(4µη−λ2η−2)

×
±(2b1µ−b0λ)∓(2b0−b1λ)

(
− λ2 +

√
4µ−λ2

2
−C1 sin(

√
4µ−λ2 /2)ξ+C2 cos(

√
4µ−λ2 /2) ξ

C1 cos(
√

4µ−λ2 /2) ξ+C2 sin(
√

4µ−λ2 /2) ξ

)
b0+b1

(
− λ2 +

√
4µ−λ2

2
−C1 sin(

√
4µ−λ2 /2)ξ+C2 cos(

√
4µ−λ2 /2) ξ

C1 cos(
√

4µ−λ2 /2) ξ+C2 sin(
√

4µ−λ2 /2) ξ

) . (3.45)

Since C1 and C2 are arbitrary constants, if we choose C1 , 0, C2 = 0, Eq. (3.45) after simplification
becomes

u2
1(ξ) =

√
3δη√

τ(4µη − λ2η − 2)
×
±2(2b1µ − b0λ) ± (2b0 − b1λ) {λ +

√
λ2 − 4µ tan(

√
λ2 − 4µ /2)ξ}

2b0 − b1{λ +
√
λ2 − 4µ tan(

√
λ2 − 4µ /2)ξ}

,

(3.46)
where ξ = xα

α
+ 2δ tα

α(4µη−λ2η−2)α .

For λ2 − 4µ = 0, the rational function solution is

u3
1(ξ) =

√
3δη√

τ(4µη − λ2η − 2)
×
±(2b1µ − b0λ) ∓ (2b0 − b1λ)

(
−λ2 + C2

C1+C2ξ

)
b0 + b1

(
−λ2 + C2

C1+C2ξ

) . (3.47)

In particular, if C1 , 0, C2 = 0, Eq. (3.47) is simplified to the form

u3
1(ξ) = ±

(2b1λ − 4b0)
√

3δη√
τ(4µη − λ2η − 2)

×
1

2b1 + (2b0 − b1λ)ξ
, (3.48)

where ξ = xα
α

+ 2δ tα
α(4µη−λ2η−2) .

The closed form traveling wave solutions to the nonlinear space-time fractional modified regularized
long-wave equation were successfully constructed in this effort. The solutions obtained by Kaplan et
al. [41] and also by Abdel Salam and Gumma [37] are only in terms of hyperbolic, where as we
achieved those in terms of hyperbolic, trigonometric and rational. On comparison, our solutions are
general and much more in number than those of [37,41].

4. Conclusion

In this article, our core aim was to explore further new and general closed form traveling wave
solutions to the (3+1)-dimensional space-time fractional mKdV-ZK equation, the time fractional
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biological population model and the space-time fractional modified regularized long-wave equation.
The desired solutions have been successfully achieved by the rational (G′/G)-expansion method in
terms of hyperbolic, trigonometric and rational. To the best of our knowledge, the results obtained
throughout this article are not recorded in the literature. The suggested method has shown high
performance to construct traveling wave solutions in closed form which will be helpful to analyze
important phenomena in the nature of real world.
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