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Abstract: SEIR model is a widely used and acceptable model to distinguish the outbreak of the 
COVID-19 epidemic in many countries. In the current work, a new proposed SEIR model as a 
mathematical model for the outbreak of novel coronaviruses COVID-19 will be constructed. The 
new proposed SEIR pandemic model provides a new vision for evaluations and management of the 
epidemic of COVID-19 infection. For mathematical modeling and dynamic analyses, this paper uses 
the real data of spreading COVID-19 in Saudi Arabia. The dynamics of the proposed SEIR model are 
presented with the reproduction number and the extensive stability analysis. We discussed the domain 
of the solution and equilibrium situation based on the proposed SEIR model by using Jacobian's 
method of linearization. The condition of equilibrium and its uniqueness has been proved, and the 
stability analysis of disease-free equilibrium has been introduced. A sensitivity analysis of the 
reproduction number against its internal parameters has been done. The global stability of the 
equilibrium of this model has been proved by using Lyapunov's Stability theorem. A numerical 
verification and predictions of the proposed SEIR model have been made with comparing the results 
based on the SEIR model and the real data due to the spreading of the COVID-19 in Saudi Arabia. 
The proposed SEIR model is a successful model to analyze the spreading of epidemics like 
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COVID-19. This work introduces the ideal protocol, which can help the Saudi population to 
breakdown spreading COVID-19 in a fast way. 

Keywords: novel coronavirus; COVID-19; SEIR model; Jacobian matrix; reproduction number; 

Lyapunov's stability 

 

1. Introduction 

One of the most global deathly diseases is HIV (Human Immunodeficiency Virus), which has its 
genesis from crossed kinds from chimpanzees to humans. No one knew this disease before 1980, and 
its transmission was not coupled with visible signs or symptoms. Almost, by 1980, HIV has spread to 
the five continents, also within this interval of time, more than 300,000 persons were infected by HIV. 
Another well-known deathly infectious disease is called Ebola. It killed many people around the 
world in the past years. Some scientists believed that its transmission comes from an infected animal 
such as non-human mammals or bats. Many other deathly diseases are existing due to the interaction 
between different living beings and humans. So far, humans have developed several medical 
protocols and techniques to protect themselves [1]. 

Now, all the world suffering from the COVID-19 outbreak, which is currently continuing, and 
the number of infections is rising steadily. This is due to the presence of many factors that increase 
the complexities of COVID-19 infection and create barriers to disease management. Among the most 
important of these barriers is the origin of the infection is still unknown, and the incubation period of 
the virus is entirely unlimited. Moreover, there is yet no direct treatment for this virus, or 
anti-vaccine. Therefore, disease control largely depends on timely diagnosis and isolation. One 
essential factor in the spread of this disease is the transition of infected people from one place to 
another, which affects more people and therefore causes the spread of this disease. As a result, many 
countries have prohibited air traffic for a long time, and they stopped all kinds of sports and 
competitions. Besides, every country around the globe is trying to reduce unnecessary travel and to 
reduce cases of infection in their countries [2]. 

Thus, scientists and researchers all over the world are trying to find out and improve vaccine or 
cure for the outbreak. So that in the future, such as pandemic may be controlled, from a medical 
engineering point framework, an infectious disease can be well known and understood by using the 
mathematical models. This idea was started in 1927. After that, many different mathematical models 
have been constructed for various diseases and infections [3–8]. Wu et al. [9] introduced the 
well-known SEIR model (Susceptible-Exposed-Infectious-Recovered) model to describe the 
transmission dynamics and estimated the national and global spread of the disease, depending on 
reported data from December 31, 2019, to January 28, 2020. They also estimated that the basic 
reproductive number for COVID-19 was about 2.68. Read et al. [10] reported a value of 3.1 for the 
basic reproductive number based on data fitting of the SEIR model, using an assumption of 
Poisson-distributed daily time increments. Tang et al. [11] proposed a deterministic compartmental 
model incorporating the clinical progression of the disease, the individual epidemiological status, and 
the involvement measures. They found that the reproductive control number could be as high as 6.47, 
and that involvement strategies such as condensed contact tracing followed by isolation and 
quarantine can effectively reduce the control reproduction number and the transmission risk. Imai et 
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al. [12] conducted computational modeling of potential epidemic tracks to estimate the size of the 
disease outbreak in Wuhan, with a focus on the human to other human transmissions. Their results 
imply that control measures need to block well over 60% of transmission to be effective in 
containing the outbreak. Also, Gao et al. [13] developed a deep learning algorithm to analyze the 
infectivity of the novel coronavirus and predict its potential hosts. Their results indicate that bats and 
minks maybe two animal hosts of this virus. Most of these models have emphasized the significant 
role of the direct, human-to-human transmission pathway in this epidemic, as highlighted by the facts 
that the majority of the infected individuals did not have any contact with the marketplaces in Wuhan, 
that the number of infections has been rapidly increasing, and that the disease has spread to all 
provinces in China as well as more than 20 other countries. Many infected individuals exhibit a 
relatively long incubation period so that they do not show any symptoms and are unaware of their 
infection for as long as 10–14 days. During this time, they can easily transmit the disease to other 
people through direct contact. On the other hand, the models published thus far have not considered 
the role of the environment in the transmission of COVID-19. Several other modeling studies have 
already been performed for the COVID-19 epidemic [9,10,14–23]. 

Because the mathematical model can reach understood and definite conclusions about the 
COVID's outbreak, a cascade of SEIR models has been constructed and developed to describe the 
mechanisms of its transmission from the source of infection, reservoir, hosts to humans [22]. De la 
Sen, M., et al. discussed a generalized time-varying SEIR propagation disease model subject to 
delays which potentially involves mixed regular and impulsive vaccination rules [24]. Song et al. 
studied the SVEIRS infectious disease model with pulse and two-time delays. The pulse vaccination 
strategy is used as an effective strategy for the elimination of infectious disease [25]. 

Using a modified version of similar models, this paper is devoted to predicting the new 
COVID-19 model to be more suitable for more cases in any country by mathematical analysis of the 
considered model. Within this work, a proposed SEIR model has been constructed with global 
analysis. We aim to discover the dynamics of the transmission of the virus through humans. Another 
target is to study and find out the ideal protocols, control, and strategies that can reduce the outbreak 
significantly based on data on spreading the COVID-19 in Saudi Arabia. 

2. Materials and methods 

2.1. Formulation of a new SEIR Model 

During spreading COVID-19 in any country, the population could be divided into four dynamic 
sub-populations (see figure 1) which are described with the parameters of transmission rates as 
follows [1,7,17,24,26]: 

  S t is devoted to the susceptible population who are healthy but can contract the disease. 

  E t is dedicated to the exposed population who infected but not yet infectious. 

  I t is dedicated to the people who confirmed infected and under treatment. 

  R t is defined as the individuals who have recovered and cannot contract the COVID-19 

again. 
 0  is defined as the transmission rate from a susceptible population to infected. 
 0   comprises of new birth and new residents per unit value of time 
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 1 0d  is the natural death rate. 

 2 0d  is the death rate due to COVID-19. 

 1 0  is the transmission rate of recovery from the population who confirmed infected. 

 2 0  is the transmission rate of recovery from the exposed population. 

 0r  is the transmission rate of confirmed infected from the exposed population. 

 

Figure 1. The flowchart of the proposed SEIR model. 

We define the total population size by  N t  as follows [1,7,26]: 

           N t S t E t I t R t      (1) 

According to the inflows and outflows in Figure 1, we can convert them into first-order ordinary 
non-linear differential equations as follows [1,7,26]: 

  
       1

dS t
S t E t d S t

dt
      (2) 

  
         1 2

dE t
S t E t d r E t

dt
       (3) 

  
       1 2 1

dI t
rE t d d I t

dt
      (4) 
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       1 2 1

dR t
I t E t d R t

dt
      (5) 

By simplify the above equations, we have 

  
      1

dS t
E t d S t

dt
      (6) 

  
       1

dE t
S t E t E t

dt
     (7) 

  
     2

dI t
rE t I t

dt
    (8) 

  
       1 2 1

dR t
I t E t d R t

dt
      (9) 

where  1 1 2d r     and  2 1 2 1d d    . 

2.2. Theorem 1 (solutions never negative) 

All the solutions of the proposed SEIR model with its initial condition is a subset in the interval 
[0, )  and         , , , 0S t E t I t R t   for all values 0 t   . 

Proof. All the right-hand sides of the proposed SEIR model is completely continuous and 
locally Lipschitzian on ℝ. The solutions         , , ,S t E t I t R t  with its initial conditions exist 

and are unique in the interval  0,  [7]. 

From the Eq (6) where   1 0E t d M    and 0  , then, we obtain the following valid 

inequality 

  
   dS t

M S t
dt

    (10) 

By solving the above differential inequality, we get 

     0 0M tS t S e    (11) 

Hence,  S t  is a non-negative function for all values  0,t  . 

From the Eq (7), we have 

  
   1

dE t
E t

dt
    (12) 

which gives 

      10 0tE t E e     (13) 
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Hence,  E t  is a non-negative function for all values  0,t  . 

In similar manners for the rest equations, we have 

  
        2

2 0 0tdI t
I t I t I e

dt
        (14) 

and 

  
        1

1 0 0d tdR t
d R t R t R e

dt
       (15) 

Hence,    andI t R t are non-negative functions for all values of  0,t   which complete the 

proof. 

2.3. Theorem 2 (The solutions domain) 

All the solutions of the proposed SEIR model structure that initiate in ℝା
ସ  are bounded inside 

the region 𝛺 defined by 𝛺 ൌ ቄሺ𝑆, 𝐸, 𝐼, 𝑅ሻ ∈ ℝା
ସ : 0 ൑ 𝑁ሺ𝑡ሻ ൑ ௸

ௗభ
ቅ as t  . 

Proof. By differentiating both sides of the Eq (1), we get 

           N t S t E t I t R t          (16) 

Substituting from the proposed SEIR model (6)–(9), we get 

  1 2N d N d I       (17) 

From theorem 1, we have  2 0d I t   ; hence, the following inequality is valid 

     1N t d N t      (18) 

Then, we obtain 

      1

1 1

0 d tN t N e
d d

  
   
 

  (19) 

Thus, when t   we get the solution  
1

0,N t
d

 
  
 

, which completes the proof. 

2.4. The epidemic equilibrium of the proposed SEIR model 

To determine the epidemic equilibrium of this model, we set all the derivatives equal to zero 
and solve the system as follows [7]: 

          0S t E t I t R t         (20) 

which gives 



7024 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7018–.7044. 

  10 SE d S    (21) 

  10 SE E     (22) 

  20 rE I    (23) 

    1 2 10 I E d R        (24) 

From the Eq (22), we have 

  1S



   (25) 

From the Eq (23), we have 

  2E I
r


   (26) 

Substitute from Eqs (25) and (26) into the Eq (21), we get 

   1 1
0

2 1 1 2

1 1
rd rd

I
d


  

 
     

 
  (27) 

where 

  
 0

1 1 1 1 2d d d r

 
 
 

  
 

  (28) 

The number 0 is called the reproduction number (RBN) [1,7]. 

The reproduction number is positive, and it is zero if there is no transmission, where 0.0   
and it can be interpreted as the number of secondary cases or the new infection rate. 
Substitute from Eq (27) into Eq (26), we obtain 

  1
0 1

d
E


     (29) 

Substitute from Eqs (25), (27), and (29) into Eq (24), we get 

  1 2 2
0

2

1
r

R
  


 
   
 

  (30) 

Thus, at disease-free equilibrium (DFE) 0 1   gives 0E I R   and leads to 1

1d





 , 

which agree with Eq (25) and the domain of solution in theorem 2. 
Then, if 0 1   the system has a unique endemic equilibrium [7]: 

   * * * * *
0 , , ,E S E I R   (31) 

where *

1

S
d


 ,  * 1

0 1
d

E


   ,  * 1
0

2

1
rd

I


   , and  * 1 2 2
0

2

1
r

R
  


 
   
 

. 
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Thus, the system has a unique disease-free equilibrium 0E when 0 1  and has a unique endemic 

equilibrium *
0E when 0 1   [7]. 

2.5. Equilibrium by applying Jacobian matrix 

To get the reproduction number 0 by using the Jacobian matrix method, we consider the 

disease-free equilibrium (DFE) of the proposed SEIR model is acquired by setting 0E I R    in 

the Eqs (21)–(24), hence, we obtain DFE in the form 0
1

,0,0,0E
d

 
  
 

 [1,7]. 

The Jacobian matrix of the proposed SEIR model takes the following form: 

  
0

1

1

2

2 1 1

0 0

0 0

0 0

0

E

E d S

E S
J

r

d

 
  


 

   
  
 
  

  (32) 

By using the Jacobian's linearization method, we will linearize the first two equations considering the 

equilibrium situation of the system 
1

0, 0, andI E S
d


   . 

Hence, we consider the following functions 

         1,F S E S t E t d S t      (33) 

         1,G S E S t E t E t     (34) 

Then, we have 

  
   
   

   
   

   
   

1

1

0 0 0 0

0 0 0 0
S E

S E

F F S t S E d S S t S

G G E t E E S E t E

 
  

          
                

  (35) 

By substituting from the equilibrium position, we obtain 

  
 
 

 

 

1
1

1

1
1

0

d
S tdS t

d
E t

E t
d



 

                      
 

  (36) 

Hence, the coupled non-linear Eqs (6) and (7) has been linearized to the forms: 

  
     1

1

dS t
d S t E t

dt d


     (37) 

and 

  
   1 1

1

dE t d
E t

dt d

   
  
 

  (38) 



7026 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 7018–.7044. 

Hence, the Jacobian matrix of the proposed SEIR model after linearization at equilibrium is given by 
[1,7]: 

  
0

1
1

1
1

2

2 1 1

0 0

0 0 0

0 0

0

E

d
d

J
d

r

d



 


 

   
 

 
  

 
 
  

  (39) 

By calculating the characteristic equation given by 
0 4 0EJ I  , where is the eigenvalues 

parameter and 4I is the identity matrix of order four, we obtain the eigenvalues of the matrix
0EJ as 

follows: 

  

2
1

1
2

1
3

1 1
4

1

d

d

d

d






 


 
      
    
           

  (40) 

Hartman–Grobman theorem state that the solutions of a square system of non-linear ordinary 
differential Eqs (6)–(9) in a neighborhood of a steady-state look "qualitatively" just like the solutions 

of the linearized system near the point 0
1

,0,0,0E
d

 
  
 

. This result holds only when the equilibrium 

is a hyperbolic equilibrium; that is when none of the eigenvalues of the matrix
0EJ  have zero real 

part [7]. 
Thus, from (40) we obtain the following condition of equilibrium 

  1 1 0d      (41) 

Thus, 0
1 1

1
d





   is the condition of equilibrium. 

2.6. The uniqueness of equilibrium condition 

If the matrix 
0EJ  is obtained from the linearization and is the Jacobian evaluated at equilibrium 

 0
1

,0,0,0DFE E
d

 
  
 

, the condition 
0

0EJ  means that the equilibrium is isolated, which means 

there is a disk around it that does not contain other equilibria. 
Hence, from (39), we have 
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     
0

1
1

1 2 1 1 1
1

2

2 1 1

0 0

0 0 0det det 0

0 0

0

E

d
d

J d d
d

r

d



    


 

   
 

 
      

 
 
  

  (42) 

Thus, the condition (41) is the only condition of the equilibrium of the proposed SEIR model. 

Therefore, the unique equilibrium condition of the proposed SEIR model is 

  
1 1

1 0
d




    (43) 

and the reproduction number (RBN) 0
1 1d





   is also unique. 

2.7. Theorem 3 (Stability analysis of disease-free equilibrium) 

The proposed SEIR model  0
1

,0,0,0DFE E
d

 
  
 

is locally asymptotically stable under the 

condition 0 1   and unstable when 0 1  [7]. 

Proof. From the Jacobian matrix of the system (39) which is defined at  0
1

,0,0,0DFE E
d

 
  
 

and 

the eigenvalues (40), we have 

  1 2 2 1 3 10, 0, and 0d d              (44) 

Thus, the system is locally stable when 1 1
4

1

0
d

d

   
  , which gives 

1 1

1
d




 , then, the stability 

condition takes the form 

  0
1 1

1
d





     (45) 

and the instability condition is 

  0
1 1

1
d





     (46) 

Thus, we have 
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0

0 0

0

1

0 No transmissio

Unstable 

n

situation

Stable situa1 tion

  
     
   

  (47) 

2.8. Local sensitivity analysis of RBN ( 0 ) 

Local sensitivity analysis is a sensitivity analysis that examines the change in the output values 
that result from a change in one input value (one-parameter). The sensitivity or elasticity of the 

reproduction number 0 concerning any parameter p is given by [7]: 

  
0

00 0 %

%
p

p p p

 
   

 
  (48) 

The sensitivity of 0 concern p is positive if 0 is increasing concerning p and negative if 0 is 

decreasing concerning p. 

Applying the formula (48) into the reproduction number 0 which takes the form 

  
 0

1 1 1 1 2d d d r

 
 
 

  
 

  (49) 

Then, 

  
0

0 0 1 0

 
        

  (50) 

  
0

0 0

1

0r r

r r 
         

  (51) 

  2

0

20 0

2 2 1

0 
  

  
       

  (52) 

  
 

1

0

1 10 0

1 1 1

0d d

d d




  
       

  (53) 

The fact that 
0

1

r r

   , 2

0

2

1

 
   , and 

 
1

0

1 1

1

d d 



    means that 1% increase in each one 

of  2 1, ,r d  will produce 
 1 12

1 1 1

, , %
dr 

  
 

 
 

 decrease in 0 , respectively. 

From relation (50) 
0

1
   means that a 1% increase will produce a rise of 1% in 0  [7]. 
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2.9. Global stability of equilibria of the SEIR model (Lyapunov's stability theorem) 

Lyapunov functions are scalar functions that may be used to prove the global stability of 
equilibrium. Lyapunov states that if a function ( )V x is globally positively definite and radially 

unbounded, and its time derivative is globally negative, *( ) 0 for allV x xx   then the equilibrium
*x is globally stable for the autonomous system  x f x  , and  V x  is called Lyapunov's 

function [7]. 

2.10.Theorem 4 (Global stability) 

The SEIR model  0
1

,0,0,0DFE E
d

 
  
 

is globally stable of the disease-free equilibrium 

under the condition 0 1  . 

Proof. We will consider the proposed SEIR model on the space of the first three variables only 

 , ,S E I . It is clear that, if the disease-free equilibrium for the first three equations is globally stable, 

then 0R   , and the disease-free equilibrium for the full SEIR model is globally stable. 

We construct the Lyapunov function on ℝା
ଷ  in the following form [7]: 

  * *
*

1

ln
S E I

V S S S
S r




          
  (54) 

where   is a parameter will be determined later, and *

1

S
d


 . 

The Eq (54) shows that, at the disease-free equilibrium *

1

,0,0S
d

 
 

 
, 0V  . 

Now, we have to show that 0V   for all  
1

, , ,0,0S E I
d

 
  
 

. 

The Eq (54) can be re-written as follows 

  *
* *

1

1 ln
S S E I

V S
S S r




          
  (55) 

The first term is positive for any value of */S S  , and the rest two terms are also non-negative, so 

0V    
Now, we take the derivative of the Eq (54), we obtain 

  
*

1

1
S E I

V S
S r



  

     
 

  (56) 

Substitute from the first three equation of the SEIR model and using the Eq (26), we obtain 
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2

2 2 2 2
1

1 1 1

2V SI d S I SI I
r Sd d r r r

     


           (57) 

We choose 
1

1


 , then we have 

   1 2
0

1 1

2 1
d S

V I
d S r



           

  (58) 

Since 0 1   then, the last term is non-positive. 

For the first term, consider 1d S
x


, then the term inside the brackets takes the form

 2
11

2 0
x

x
x x

     
 

 , which gives two possibilities. The first one is at the equilibrium point 

*

1

S S
d


   , which leads to 1x  . Then, the first term completely vanishes. Hence, we have the 

last term only, and it is non-negative. Thus, 0V   . 
The second possibility is 1x  , then, the two terms are non-positive. Thus 0V   .  

Therefore, 0V    for every       
1

, , ,0,0S t E t I t
d

 
  
 

. 

According to Lyapunov's theorem, the disease-free equilibrium is globally asymptotically stable 
for the system of the proposed SEIR model in all [7]. 

2.11. Solutions the system of the proposed SEIR model 

After linearization of the system of the SEIR model with the initial values, the system takes the 
form 

  
     1

1

dS t
d S t E t

dt d


     (59) 

  
   1 1

1

dE t d
E t

dt d

   
  
 

  (60) 

  
     2

dI t
rE t I t

dt
    (61) 

  
       1 2 1

dR t
I t E t d R t

dt
      (62) 

We assume the initial conditions of the above system take the form 
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                   
0

, , , 0 , 0 , 0 , 0
t

S t E t I t R t S E I R

   (63) 

To solve the above system, we start to solve the equation (60) as following 

      10 e tE t E    (64) 

where 1 1
1

1

d

d

   
 . 

Then, by substitute from Eq (64) into the Eq (61), we get 

  
      1

2 0 e tdI t
I t rE

dt
    (65) 

By solving the above equation, we get the infection function in the form 

       2 1
2 20 t tI t I e e       (66) 

where 
 

2
1 2

0rE


 



. 

We can solve the first equation of the system by using the Eq (64) 

  
     

1
1

1

0
e tdS t E

d S t
dt d


      (67) 

After solving the Eq (67), we get 

      1 1
3 3

1 1

0 ed t tS t S e
d d

     
       
   

  (68) 

where 
 

3
1 1 1

0
1

E

d d





 

   
. 

By inserting the Eqs (64), (66), and (68) into the Eq (62), we can solve the ordinary differential 

equation  R t . 

3. Results 

3.1. Numerical verification and predictions 

To verify the proposed SEIR model, we will use the real data of spreading COVID-19 in Saudi 
Arabia. The spreading of COVID-19 has been stared in Saudi Arabia on March 3, 2020. The 
discovered cases continued with small numbers until the beginning of April, then the number of 
cases detected in infection increased. So, we decided to consider April 1, 2020, which is the real 
beginning of the spread of the COVID-19 epidemic in Saudi Arabia.  

We used the statistics tables which issued from the Saudi Ministry of Health [27]and the daily 
official statement issued by the ministry as well as from the Wikipedia website [28], which also 
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depends on the ministry's website and some other sites that would announce these statistics.  
Another source of these data is the Saudi Center for Diseases Prevention and Control [29]. To 

obtain some information about the kingdom's population, mortality rate, and population growth rate, 
the official website of the General Statistics Authority of Saudi Arabia has been used.  

To study the situation of spreading COVID-19 in Saudi Arabia until June 15, 2020, we will 
represent the curve of the daily number of infections and the time series curve of the total number of 
infections as in the Figures 2 and 3. 

 

Figure 2. The daily number of infections in Saudi Arabia between 4/1/2020 and 
6/15/2020. 

Figure 2 shows that the number of cases on April 1, 2020, was 157 infections, and it reaches 
4507 infections on June 15, 2020, and between the two numbers, the curves passed through many 
variations up and down. Figure 3 shows that the total number of cases at the same interval started 
with 157 infections and reaches an accumulated amount of 132,098 infections on June 15, 2020. So, 
we will use this data through the proposed SEIR model to stand on whether there is a convergence 
between the model results and the real data [27–29]. 
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Figure 3. The total number of infections in KSA between 4/1/2020 and 6/15/2020. 

3.2. Applying the proposed SEIR model to Saudi Arabia data of spreading COVID-19 

According to the official data of Saudi Arabia, we have the following initial data, which is 
considered as the initial conditions of the system based on the SEIR model, as in Table 1 [27–29]: 

Table 1. The initial conditions of the model SEIR. 

 0S   0E Assumed  0I   0R  

34,218,169 41.5 10  157 99 

where   34,218 60 ,1 9S   is the total population in Saudi Arabia up-to June 15, 2020. The total 

number of the exposed population infected but not detected by testing has been assumed  
  40 1.5 10E   , while the number of infections  0 157I  . The recovery number of the population 

at the same time was  0 99R  . 

The total number of a new birth of Saudi children and new residents 2300person / day   

and the rate of natural death is around 1030 persons/day which gives 5
1 3 10d   . Some of the other 

parameters have been calculated or estimated or assumed, as in Table 2. 
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Table 2. The values of parameters in SEIR [1,7,26–29]. 

Parameter Value Background 

  2300 Calculated 

1  0.0024  Calculated 

2  32.0 10  Estimated 

r  0.003  Calculated 

1d  53.0 10  Calculated 

2d  52.7 10  Calculated 

After using the above values of the parameter and by using MAPLE software, we get the results 
that indicate the number of daily infections as outcomes of the proposed SEIR model. The following 
figure shows the numerical results of the proposed SEIR model against the real data with different 
values of the parameter  and RBN  0 to stand on the convergence between them as in Figure 4. 

It is noted that an increase in the parameter leads to a rise in the number of infections and RBN 

 0 . The value of the parameter (the rate of transmission from susceptible population to infected 

in Saudi Arabia) within the mentioned interval above is   91.0 3.0 10    . 

Moreover, the reproduction number RBN  0 is  0 0.551 1.563 1    . This range gives 

the transmission rate at which the susceptible individual converted to an exposed individual, which 
means the spreading of the COVID-19 is a critical situation. 

To illustrate the convergence between the results of the proposed SEIR model and the real 
results, we will display Figure 5, which shows the cumulatively infected numbers within the same 
interval referred to earlier. It is noted that the curve of the real data is setting between the three cases 
of the proposed SEIR model with the mention values of 0and  parameters. It is pointed out that 

the results of the proposed SEIR model are very closed to the real results, which confirm that this 
model is maybe more successful than other models. 

Now, we will predict the situation of spreading COVID-19 in Saudi Arabia based on the current 
data and parameters with the same rates without any change in the procedures. We illustrate the 
results of the total number of infections by applying the proposed SEIR model for the next four 
hundred days, starting from April 1, 2020, and end on May 5, 2021. In Figure 6, the curves and 
results show whether the number of infections will not breakdown, and the spreading of the 
COVID-19 will continue with an unstable situation or not. The curves have been done by using the 
same three values of the parameters . The figure shows that the spreading of COVID-19 will 
continue with unstable spread without any breakdown, and the number of infections will increase. 
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Figure 4. The number of daily infections based on proposed SEIR model with various 
values of 0and  parameters against the real data in KSA between 4/1/2020 and 

6/15/2020. 

 

Figure 5. The number of total infections based on the SEIR model with various values of 

0and  parameters against the real data in KSA between 4/1/2020 and 6/15/2020. 
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We will show what we should do against this situation in the section of the best protocol to 
breakdown spreading the COVID-19. 

 

Figure 6. The number of daily infections based on the SEIR model with various values 
of 0and  parameters in KSA for 400 days between 4/1/2020 and 5/5/2021. 

3.3. Study the sensitivity of the RBN  0 based on the current data of Saudi Arabia 

To study the sensitivity of the critical parameters against the reproduction number RBN  0 , 

we use the Eqs (50)–(53)and represent Figures 7–9, which show the increment of the value of RBN
 0  concerning the parameters 2, , and r  . Figure 7 shows the parameter has a significant 

effect on the value of the reproduction number 0 , where an increase of the parameter leads to an 

increase in the value of the reproduction number 0 . The Saudi Arabia data indicates that for a stable 

epidemic spreading of COVID-19 0 1  , the value of the parameter  must be smaller than the 

value 91.8 10 , which is near to the current situation. Moreover, the Figures 8 and 9 show that the 
values of all the other studied parameters have significant effects on the increment of the 
reproduction number 0 . The value of each parameter which gives stable reproduction number 

 0 1   individually, when the other parameters are constants, is provided as follows, 

  9
21.8 10 , 0.004, 0.005r       (69) 
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Figure 7. The reproduction number against the parameter  9
01.8 10 1     . 

 

Figure 8. The reproduction number against the parameter 2  2 00.004 1    . 
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Figure 9. The reproduction number against the parameter r   00.005 1r    . 

4. Discussions 

4.1. How to breakdown spreading the COVID-19 in Saudi Arabia 

Now, we are in the most critical section, which tells us what we should do to breakdown the 
spreading of COVID-19 in Saudi Arabia. Therefore, in this section, we will study the change of each 
parameter for the next 400 days of spreading the virus to know which one and which value will make 
the curve of the number of daily infections will reach the maximum value and then converts to go 
down.  

Figure 10 shows that a reduction of the parameter  leads to a reduction in both the 
reproduction number 0 and the number of daily infections. Figures 11 and 12 show that the 

parameters 2 and r have significant effects on the number of daily infections, where a decrease in 

the value of each one of them leads to a reduction in the value of the number of daily infections and 
creates a peak point situation on its curve. We did not examine the parameters 1 2andd d where no one 

has a control to change the rates of death and that rates are out of our hands. Figure 11 represents that 
the peak of spreading COVID-19 in Saudi Arabia could be on February 8, 2021, if we could decrease 
the value of the parameter to be in the following range   101.0 3.0 10    , which makes the 

reproduction number 0 very small and set in the interval  0.001 0.004 . Figure 12 represents that 

the peak of spreading COVID-19 in Saudi Arabia could be on December 25, 2020, if we could 
increase the value of the parameter 2 0.02   , which makes the reproduction number 0 1  and 

setting in the interval  0.213 0.638 . Figure 13 shows that the peak of spreading COVID-19 in 

Saudi Arabia could be on September 26, 2020, if we could increase the value of the parameter
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0.01r  and 91.0 10   , which makes the reproduction number 0 0.213  . 

 

Figure 10. The number of daily infections for 400 days when the values of  decreased. 

 

Figure 11. The number of daily infections for 400 days when the value of 2 increased. 
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Figure 12. The number of daily infections for 400 days when the value of r increased. 

According to the results in Figures 10–12, we can get the ideal situation of breakdown the 
spreading of COVID-19 in Saudi Arabia when we merge all the changes of the parameter at the same 
time to get the ideal case. So, we will calculate the number of daily infections based on the new 
values of the parameters, as in Table 3 as follows: 

Table 3. The new values of parameters in SEIR which gives an ideal situation. 

Parameter Value Background 

  2300 Calculated 

1  0.0024  Calculated 

2  22.0 10  Estimated 

r  0.01  Calculated 

1d  53.0 10  Calculated 

2d  52.7 10  Calculated 

Figure 13 shows the number of daily infections when we apply the values of the parameters, as 
in Table 3, which gives us the best situation to breakdown the spreading of the COVID-19 in Saudi 
Arabia in the next stage. The figure represents that the daily number of infections will go down faster 
when we change all the parameters as in Table 3 more than changing each parameter separately. 
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Moreover, it is clear to see that the spreading will breakdown immediately after reaching those 
values of the parameters, and the breakdown of spreading COVID-19 could be on July 31, 2020. 
Thus, by going back to the definition of each parameter, we know now what we should do to 
breakdown the spreading of COVID-19 in Saudi Arabia. So, we can write the best protocol, which 
must the population in Saudi Arabia follow it to breakdown the spread of COVID-19 in Saudi Arabia 
and go back to their natural life. 

 

Figure 13. The number of daily infections for 400 days when the values of all parameters 

2, , and r  changed. 

4.2. The ideal protocol to obtain a breakdown of spreading COVID-19 in Saudi Arabia 

To get the ideal situation which can help us to the breakdown of spreading COVID-19 in Saudi 
Arabia, we must start implementing the following protocol and procedures (see Figure 14). 
(1) They are decreasing the value of the transmission rate from the susceptible population to 

infected but not detected by testing the population to be 91.8 10   . 
(2) They are increasing the value of the transmission rate from infected and detected by testing the 

population to the recovery zone to be 2 0.004   by using a successful treatment and work with 

the principle of prevention is better than treatment. 
(3) They are increasing the value of the transmission rate population r  to be 0.005r  , which 

means we have to increase the number of tests which help us to determine the population who 
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confirmed infection and sit them in a separate zone where they are sitting with other population 
will increase the diseases. 

 

Figure 14. The flowchart of the ideal protocol based on proposed SEIR model. 

5. Conclusions 

This paper proposed a new statistical SEIR epidemic for the outbreak of new COVID-19 
coronaviruses. This proposed pandemic model offers a new method for evaluating and handling the 
COVID-19 epidemic. The real data of spreading COVID-19 in Saudi Arabia has been used to verify 
the results of that proposed model. The results show that the proposed SEIR model is a successful 
model to analyze the spreading of epidemics like COVID-19 in Saudi Arabia. The ideal protocol 
consists some steps, and advices have been introduced in detail to help the Saudi Arabia population 
to speed the breakdown spreading of COVID-19. One of the main subjects in that protocol is 
prevention is better than treatment. The other essential issue which helps to breakdown the spread of 
COVID-19 is to stay away and be at home as you can and make the infected people in an isolated 
zone or secured area. 

Lastly, we need to increase the number of tests that confirm the infection and include effective 
and sufficient medication and vitamins, tonics, and supplements to protect non-infected individuals. 
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