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Abstract: A modified LIF-type stochastic model is considered with a non-delta correlated stochastic
process in place of the traditional white noise. Two different mechanisms of reset are specified with
the aim to model endogenous and exogenous correlated input stimuli. Ornstein-Uhlenbeck processes
are used to model the two different cases. An equivalence between different ways to include currents in
the model is also shown. The theory of integrated stochastic processes is evoked and the main features
of involved processes are obtained, such as mean and covariance functions. Finally, a simulation
algorithm of the proposed model is described; simulations are performed to provide estimations of
firing densities and related comparisons are given.
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1. Introduction

Among stochastic neuronal models the Leaky Integrate-and-Fire (LIF) model with colored noise
([1, 2]) is a refined version of the classical one driven by white noise ([3, 4]). The standard LIF
model cannot explain the high variability in the neuronal response to stimulations and the adaptation
phenomena ([5, 6, 7, 8]), hence more accurate models are needed. The introduction of memory can
be achieved in various and different ways. For instance, in [9] two different methods of inclusion of
memory are presented: Langevin equations with colored noise and fractional Langevin equations. The
latter have been also studied in [10, 11], but we will focus in this work on the first one, which can be
used to introduce correlated inputs in the model.

Indeed, correlated inputs have been widely considered to explain adaptation phenomena. One way
to introduce correlated inputs is to consider dependence between the excitatory and inhibitory stimuli,
as done in [12] and [13], in which IF and Hodgkin-Huxley models with mutually correlated inputs
are considered. Another way to introduce correlated inputs in neuronal models is to consider time-
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correlated stochastic inputs. This kind of approach is first used in [14] and then in [1]. Time-correlated
inputs are also described in [15] with the aid of a binary correlated stochastic process. Finally, let
us also recall that time-correlated inputs have been used also to model stochastic currents in spatial
models, as done in [16].

We mainly refer to the model presented in [1], in which time-correlated stochastic inputs are mod-
elled by using a colored noise, that is to say a noise induced by an Ornstein-Uhlenbeck process, in
contrast with the white one, which is induced by a Brownian motion. In particular, such colored noise
could arise from a diffusive approximation of the synaptic current (see [17]). A specific investigation
of a colored noise LIF model has been conducted, for instance, in [2]. In particular, the processes
involved in the model are strictly linked to integrated Gaussian processes. Indeed, we will see that
the colored noise induces an integrated Gaussian term in the membrane potential process. This term
is non-Markov, then the membrane potential process is not a Gauss-Markov process. However, ap-
proximating Gauss-Markov processes can be used to estimate the firing rate of the neuron (see [2]).
Moreover, the integrated Gaussian term could be further investigated by using some recent techniques
on integrated Gaussian processes (see [18, 19]), which could lead to another estimation of the firing
rate of this model. Such investigation will be carried on in future works.

Here, in Section 2, we consider a stochastic model based on a couple of stochastic equations in-
cluding a correlated input (the colored noise) and a current term. It is derived by applying a linear
approximation as in [20] to the stochastic model obtained combining those of [21] and [22]. We give
specific justifications about the choice of the involved parameters and, differently from the previous
works, we study the model varying the correlation time of the colored noise.

Furthermore, in our investigation we distinguish two different kinds of colored noises, depending
on two different reset mechanisms. The first one is linked to the cases in which the noise is induced
by some inner mechanism of the neurons (for instance the activation of a gate), and then has to be
reset together with the membrane potential process. For this reason we will call it endogenous noise.
Moreover, in such case we will consider a non-stationary noise and for modeling it we adopt a non-
stationary Ornstein-Uhlenbeck process.

The second one is instead linked with an external noise: it could be seen as the correlated noise
of synaptic or injected inputs. For this reason, even if the membrane potential is reset, the inputs are
not affected by this reset and so does the noise. Thus we will call it exogenous noise. Finally, in such
case, since it does not depend on the dynamics of the neuron, we could assume that the noise is in its
stationary state. Then, we will consider a stationary Ornstein-Uhlenbeck (OU) process to model this
noise.

We remark that these two cases allow to specialize the proposed model in the attempt to make it
more close to some neurophysiological evidences. Moreover, from the mathematical point of view, our
aim is also to investigate the model when a non-stationary or a stationary OU process is used to model
the noise.

Furthermore, in the model we also include a current input term. We give motivations about the
choice of the kind of the current term; then, we show the equivalence between two different ways
of including the current term in the model. Indeed, it is possible to consider the current term as an
additive term directly in the differential dynamics of the membrane potential process (as in the model
here investigated), or, differently, it is possible to consider the current term included in the dynamics
of the noise in such a way that an encoded current is in the noise itself (see, for instance, [2] and [23]).
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The latter case can be considered to model the dynamics of a neuron embedded in a neuronal network
([24, 25]). Specifically, in Appendix A the link between the model considered in [2] and [23] and the
model here proposed is explained.

In Section 3, for the general case, we give the expressions for the mean and covariance functions
of the membrane potential process and for the colored noise process. Then, in Sections 4 and 5 we
provide the specialized formulae of the mean and covariance of the membrane potential process in
the endogenous and in the exogenous noise case, respectively. By numerical evaluations we plot the
surfaces of the covariance functions in order to compare also graphically the results.

Finally, we consider the difficulty that arises in such models related to simulation. Indeed, models
involving colored noise also involve differential equations with non-regular terms, hence the classical
Euler scheme could not converge. In Section 6, we propose a simulation algorithm to solve this diffi-
culty based on a random Euler scheme given in [26] and use it to obtain some numerical approximations
of the probability density functions of the first firing time. In particular, we give some measurements of
the approximation error in terms of maximum relative error with respect to the mean and the variance
function of the process. We also use these measures to compare our algorithm with the classical Euler
one. Finally, with these simulations, we will also show in a qualitative way the role of the correlation
of the noise in the firing activity.

2. The main model

We first consider the model based on the following pair of stochastic equations:

dV(t) = −
gL

Cm
[V(t) − VL]dt −

η(t)
Cm

dt +
I(t)
Cm

dt, V(0) = V0 (2.1)

dη(t) =

[
−
η(t) − η∞

τ

]
dt +

σ

τ
dW(t), η(0) = η0 (2.2)

where η(t)dt is the colored noise: in (2.1) it is in place of the white noise dW(t) as usual in the stochastic
differential equation (SDE) of a LIF model. Specifically, the colored noise stands for a correlated input
process, Cm is the membrane capacitance, gL is the leak conductance, VL is the resting level potential,
I(t) is the input current, W(t) is a standard Brownian motion, η∞ is the resting value of η(t), τ is the
correlation time of η(t) and σ is the intensity of the noise. A spike is emitted when V(t) attains a
threshold Vth. The reset mechanism after a spike is fundamental to realize a neuronal model for the
firing activity. However, different mechanism of reset of the noise term can be used to describe different
physiological phenomena. We will consider:

(a) the case of an endogenous noise, i.e. if V(t) > Vth then V(t+)→ V0 and η(t+)→ η0

(b) the case of an exogenous noise, i.e. if V(t) > Vth then V(t+) → V0 and η(t+) →
η(t) (no reset in the noise).

Case (a): some modeling justifications.

To better understand the nature of the reset mechanism given in (a), let us consider a conductance
based model that takes in consideration the leak, synaptic and muscarinic K+ current. Following the
lines of [21], in particular Equation 1 and Section 2.2.2 for the expression of the muscarinic K+ current,
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we have

dV(t) = −
gL

Cm
(V(t) − VL)dt −

gM

Cm
p(t)(V(t) − VK)dt +

Isyn(t)
Cm

dt (2.3)

where p(t) is a gating variable and Isyn(t) is the synaptic current. For the gating variable p(t), we refer
to [22, Equation 11], thus we have

dp(t) = F(p(t),V)dt + σpdW(t). (2.4)

To obtain a more tractable model, we proceed to linearize the gating variable equation, following the
reduction method presented in [20, Section 2.4 and Appendix A]. In particular we have from [20,
Equation 37]

dp(t) ' −
p(t) − p∞

τp
dt + σpdW(t) (2.5)

where τp is the (mean) time constant of p and p∞ is the (mean) equilibrium state of the gating variable,
and then, by approximating V(t) − VK ' ∆V with ∆V constant, we also have

dV(t) ' −
gL

Cm
(V(t) − VL)dt −

gM∆V
Cm

p(t)dt +
Isyn(t)
Cm

dt. (2.6)

Moreover, since we are using a fixed threshold model instead of an adaptive threshold one, the
gating variable has to be reset together with the membrane potential. In particular if V(t) > Vth, then
V(t+)→ Vreset = V0 + δV and p(t+) = preset = p∞ + δp where δV and δp are small perturbations on the
initial values that are due to the low spiking activity of a neuron which is subject to a slow muscarinic
K+ current (see [20]). By simple algebraic transformations, one can recognize in this model Equations
(2.1) and (2.2). Indeed, one can set

η∞ = gM∆V p∞ (2.7)
η0 = gM∆V p0

τ = τp

σ = gMσpτp∆V

and, finally we obtain η(t) = gM p(t)∆V .

Specifications of the parameters as functions of the correlation time of the noise.

In order to specify the above parameters η∞, η0, τ in the model (2.1)-(2.2), we need to know ∆V, p∞
and τp. These quantities can be estimated by considering an average V of the process V and using the
formulas (see [20, Table 1])

τp(V) =
τmax

3.3e
V+35

20 + e−
V+35

20

(2.8)

p∞(V) =
1

1 + e−
V+35

10

. (2.9)
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Typically, one could assume V ' −60mV (mean membrane voltage in vivo) and then obtain τp '

200ms and p∞ ' 0.08. However, we will vary these values, studying the model for different values of
τp and determining V by inverting formula (2.8) and then p∞ from formula (2.9).

Moreover, depending on eventual modeling necessity, one could decide to reset also the input cur-
rent term I(t). Finally, if we assume last spike is far away in time from the initial time of the simulation,
we can pose δp ' 0, since p stabilize itself near p∞ before a spike.

Case (b): some modeling justifications.

Case (b) is quite different. Indeed, it can be used to describe phenomena in which the synaptic
current is itself noisy and correlated. Time-correlated synaptic currents have been already considered
in LIF models in [14] and in [1], while they can be used in more complicated models, such spatial
models with depolarization (see [16]). In particular, colored noise is preferred to white noise in the
synaptic currents when the synapses exhibit a finite relaxation time (see, for instance, [17], in particular
Equations 3.5 and 3.6).

Another important difference between the two cases (a) and (b) will be the choice of η∞ and η0. In
the endogenous noise case (a), the values of η0 and η∞ have their effects on the dynamics of the model.
Following [20], one could choose η∞ ∈ R, while η0 = η∞ + δη, where δη ∈ R is a perturbation on the
resting value η∞. In the exogenous case (b) we do not have any reset mechanism on η, hence one could
consider η0 as a free parameter. However, if we want η to be a baseline noise, it could be convenient
for it to be stationary. To obtain the stationarity of η, one could consider η∞ = 0 and then

η0 =
σ

τ

∫ 0

−∞

e
s
τ dWs

(cf. for instance the initial value of Eq.(1.3) in [27]).

The current term.

For the input current term I(t), let us consider

I(t) =

I0e−
t
β , t ≥ 0

0 t < 0.
(2.10)

This kind of current term mimics the behavior of a synaptic current with exponential decay (see [17,
Section 2.2.2], and [24, 25]). Exponential currents have been also used to describe synaptic activity
in non-linear models such as the Quadratic Integrate-and-Fire model (see [28]) or the Exponential
Integrate-and-Fire model (see [29]). However, our current exhibits a zero baseline justified by the
assumption of a zero mean synaptic input (see Equation 3.1 of [17]). Alternatively, such kind of
current can be also justified by considering a single synaptic input and an exponential synaptic kernel
(see Equation 7.4 of [30]). Moreover, this current is deterministic. Indeed, in the endogenous noise
case (a) the noisy part of the current is neglected in favor of the endogenous noise of the gating variable,
while in the exogenous noise case (b) the noisy part of the current is explicitly written as the coupled
process η(t), after using the diffusion approximation given in [17, Equation 3.1]. One can also use
periodic currents instead of exponential ones (see, for instance, [31, 32]). However, we will focus
on such currents in future works, together with some deeper analysis of the firing times probability
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densities and the construction of an adaptive threshold model (to substitute the reset mechanism) as
done in [33].

Here, at first we consider the current in (2.10) as a synaptic current with I0 = 0.5nA, that increases
the voltage for a few mV, (see left side of Figure 1 and Figure 2), and β = 5ms ([17],[30]). Then,
we also consider the current in (2.10) as an injected current (as done, for instance, in [10]) that can
have a greater initial value than the one of a single synaptic input. In particular, to perform simulations
of firing times, we set its initial value I0 = 3nA, since a strong excitatory input is required to observe
a spike in an admissible time. Indeed, consider that in (2.1) the stochastic input η(t) can act like an
inhibitory current whose modulus can reach values up to 2.5nA in its confidence interval of the 99%.
Furthermore, in (2.10) we set β = 200ms in order to have a decay time that is comparable to the value
of the correlation time τ (τ ∼ 200ms, according to [20]).

About the probability density function of firing times, a Gauss-Markov (GM) process can be used
to approximate the solution process V(t) (see [2]); hence a Volterra integral equation (see [34]) can be
exploited to obtain some approximations of the firing densities.

Here, we determine the mean and covariance functions of the V(t) processes (obtained by solving
Equations (2.1) and (2.2)) in order to investigate the different behaviors of the neuronal potential when
it is subject to the two different stimulations of cases (a) and (b). Moreover, by simulation procedures
we also provide estimates of firing densities in order to give further useful comparisons.

3. General results

3.1. The process V(t)

Before working with a specific case, let us show what can we say about a generic solution of Eq.
(2.1), where η is a generic GM process with almost surely continuous paths. We have the following
proposition.

Proposition 1. Let V be a strong solution of (2.1) with V0 ∈ R, η a GM process with almost surely con-
tinuous paths adapted to the filtration generated by η0 and the Brownian motion W, I(t) a continuous
function and θ := Cm

gL
. Hence we have

V(t) = V0 e−
t
θ + VL

[
1 − e−

t
θ

]
−

e−
t
θ

Cm

∫ t

0
e

s
θ η(s)ds +

e−
t
θ

Cm

∫ t

0
e

s
θ I(s)ds. (3.1)

In particular, we also have

E[V(t)] = V0 e−
t
θ + VL

[
1 − e−

t
θ

]
−

e−
t
θ

Cm

∫ t

0
e

s
θE[η(s)]ds +

e−
t
θ

Cm

∫ t

0
e

s
θ I(s)ds (3.2)

and

Cov(V(t),V(s)) =
e−

t+s
θ

C2
m

"
[0,t]×[0,s]

e
u+v
θ Cov(η(u), η(v))dudv. (3.3)

Proof. To obtain (3.1), one has just to observe that for fixed ω ∈ Ω, Eq. (2.1) is a linear non-
autonomous and non-homogeneous ordinary differential equation (ODE), hence it is easy to find a
solution (which exists almost surely since η(t) has continuous paths for almost every ω ∈ Ω, hence
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s 7→ e
s
θ η(s) is integrable in [0, t]).

For Eq. (3.2), we just need to observe that t 7→ V0 e−
t
θ + VL

[
1 − e−

t
θ

]
is a deterministic function, hence

it coincides with its own expectation, while

E

[
e−

t
θ

Cm

∫ t

0
e

s
θ η(s)ds

]
=

e−
t
θ

Cm
E

[∫ t

0
e

s
θ η(s)ds

]
=

e−
t
θ

Cm

∫ t

0
e

s
θE[η(s)]ds

where the second equality follows from Fubini’s theorem, since η(s) is in L2(P) for any s ∈ [0, t], thus
E[|η(s)|] < +∞ and, being η a GM process, s 7→ E[η(s)] is continuous, hence integrable in [0, t].
Finally, Eq. (3.3) follows from the fact that

e−
t
θ

Cm

∫ t

0
e

s
θ η(s)ds − E

[
e−

t
θ

Cm

∫ t

0
e

s
θ η(s)ds

]
=

e−
t
θ

Cm

∫ t

0
e

s
θ (η(s) − E[η(s)])ds

hence

Cov(V(t),V(s)) = E

[(
e−

t
θ

Cm

∫ t

0
e

u
θ η(u)du − E

[
e−

t
θ

Cm

∫ t

0
e

u
θ η(u)du

])
×

×

(
e−

s
θ

Cm

∫ s

0
e

v
θ η(v)dv − E

[
e−

s
θ

Cm

∫ s

0
e

v
θ η(v)dv

])]
=

e−
t+s
θ

C2
m
E

["
[0,t]×[0,s]

e
u+v
θ (η(u) − E[η(u)])(η(v) − E[η(v)])dudv

]
=

e−
t+s
θ

C2
m

"
[0,t]×[0,s]

e
u+v
θ Cov(η(u), η(v))dudv

where the last equality follows from Fubini’s theorem, since η(u) ∈ L2(P) for any u ∈ [0,max{t, s}],
hence η(u)η(v) ∈ L1(P) for any (u, v) ∈ [0, t] × [0, s], and, being η a GM process, Cov(η(u), η(v)) is
continuous and then integrable in [0, t] × [0, s]. �

From this proposition we also have that the solution process V involves the integral of a GM
process. Such integrals are widely studied in [18, 19].

3.2. The colored noise process η

Now let us consider the process η solution of (2.2). We know how to write the process η in [0,+∞)
as

η(t) = η∞(1 − e−
t
τ ) + e−

t
τ

[
η0 +

σ

τ

∫ t

0
e

s
τ dW(s)

]
(3.4)

and then
mη(t) := E[η(t)] = η∞(1 − e−

t
τ ) + e−

t
τE[η0].

Hence we know that limt→+∞mη(t) = η∞ independently from the choice of η0. In the endogenous noise
case (a), we have that η0 = η∞ + δη, so

η(t) = η∞ + e−
t
τ

[
δη +

σ

τ

∫ t

0
e

s
τ dW(s)

]
Mathematical Biosciences and Engineering Volume 16, Issue 5, 5206–5225
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and
E[η(t)] = η∞ + e−

t
τ δη. (3.5)

In the exogenous noise case (b), we pose η∞ = 0 and η0 = σ
τ

∫ 0

−∞
e

s
τ dW(s), which is a zero mean

Gaussian random variable with variance given by σ2

2τ , that guarantees the stationarity. In particular in
this case we have

η(t) = e−
t
τ

[
η0 +

σ

τ

∫ t

0
e

s
τ dW(s)

]
=

e−
t
τσ

τ

∫ t

−∞

e
s
τ dW(s)

and E[η(t)] = 0. From now on let us denote mη(t) = E[η(t)] and Cov(η(t), η(s)) = cη(t, s). Moreover,
since η is a GM process, we can define the covariance factors h1 and h2 to be, for s < t,

cη(t, s) = h1(s)h2(t)

and the ratio that is given by

r(t) =
h1(t)
h2(t)

.

In the exogenous case, it will be useful the define the function ρ(t) = r(t) − r(0) since r(0) , 0 in such
case.

4. The model with endogenous noise

Let us consider the endogenous noise case (a). Writing Eq. (2.1) in its integral form, we have

V(t) = V0 −

∫ t

0

gL

Cm
[V(s) − VL]ds −

∫ t

0

η(s)
Cm

ds +

∫ t

0

I(s)
Cm

ds. (4.1)

In the endogenous noise case, the covariance function of η is given by

cη(s, t) =
σ2

2τ
e−

t
τ

[
e

s
τ − e−

s
τ

]
, 0 ≤ s ≤ t. (4.2)

Hence we can choose the covariance factors h1 and h2 to be

h1(t) =
σ

2
(e

t
τ − e−

t
τ ), h2(t) =

σ

τ
e−

t
τ

to obtain a ratio r given by
r(t) =

τ

2
(e

2t
τ − 1).

By using Doob’s formula (see [35])

η(t) = mη(t) + h2(t)W̃(r(t)) (4.3)

for some Brownian motion W̃ (despite being equal in law, it could be different from the process W),
we can exploit Eq. (4.1) as

V(t) = V0 −
gL

Cm

∫ t

0
[V(s) − VL]ds +

1
Cm

∫ t

0
I(s)ds

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5206–5225
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−
1

Cm

[∫ t

0
mη(s)ds +

∫ t

0
h2(s)W̃(r(s))ds

]
.

Moreover, recall that in this case the process η has to be reset after a spike.
Note that if in Eq.(4.1) gL = 0 and I(t) ≡ 0,∀t > 0, the process V(t) is the integrated over time

of a non-stationary Ornstein-Uhlenbeck process. Specifically, in [19] a detailed analysis of a similar
process (in terms of integrals of GM processes) was done. We can say that those results can be used
for the above model with gL ≡ 0 and when the function I(t) ≡ 0,∀t > 0.

Here, by using Proposition 1, we obtain the mean and covariance functions for the special model
considered in Eqs. (2.1)-(2.2) with the current I(t) as in Eq.(2.10).

Corollary 1. The stochastic process V(t) of model based on Eqs.(2.1)-(2.2) with V0 real number, η0 = 0
and I(t) as in Eq.(2.10) has the following mean function (for β, τ , θ)

E[V(t)] = V0e−
t
θ + VL(1 − e−

t
θ )

−
θη∞
Cm

(1 − e−
t
θ ) −

τθ

Cmα2
δη(e−

t
τ − e−

t
θ ) +

βθ

Cmα1
I0(e−

t
β − e−

t
θ )

and covariance function for t ≥ s

Cov[V(t),V(s)] =
σ2θ2

C2
mα2

[
−

θ

2α3
e−

t−s
θ +

τθ

α2α3
e−

t
θ−

s
τ

−
θ

2α2
e−

t+s
θ +

τ

2α3
e−

t−s
τ +

τθ

α2α3
e−

s
θ−

t
τ −

τ

2α2
e−

t+s
τ

] (4.4)

where we set θ = Cm
gL

, α1 = β − θ, α2 = τ − θ and α3 = τ + θ.

Proof. These two expressions follow respectively from (3.2) and (3.3) with mη and cη given in (3.5)
and (4.2) and I given in (2.10), after some straightforward but cumbersome calculations. �

From the expression of the covariance in (4.4), we can exploit the variance function

D[V(t)] =
σ2θ2

C2
mα2

[
α2

2α3
+

2τθ
α2α3

e−
α3
τθ t −

θ

2α2
e−

2t
θ −

τ

2α2
e−

2t
τ

]
where θ, α2, α3 are defined in Corollary 1.

Plots of the mean and the variance function are shown in Figure 1. Here, we can see that the
mean function admits the horizontal asymptote limt→+∞ E[V(t)] = VL − η∞θ/Cm (see in the Figure 1,
left). Note that the initial excitatory effect of the current I(t) is tempered by the inhibitory one of the
endogenous noise η(t), being the latter definitely visible for large times. For the variance function, we
have limt→+∞D[V(t)] = σ2θ2

2C2
m(τ+θ) , hence its horizontal asymptote decreases as τ increases, as we can see

in the Figure 1 (right). Indeed, as τ increases, the process has a lower variance, but the covariance
decreases more slowly, as we can see in Figure 3.

Also, simulations can be performed. Approximations of the First Passage Time (FPT) probability
density function (pdf) were obtained in Section 6. Indeed, the FPT pdf is useful to model the firing
density of the neuron.
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Figure 1. Mean (on the left) and variance (on the right) functions of V in the endogenous
noise case for I0 = 0.5nA, β = 5ms, σ = 1 and different values of τ (the other values are
in Table 1). To simplify the plots, we pose δη = 0. (We do not take into account the reset
mechanism.)

Figure 2. Mean (on the left) and variance (on the right) functions of V in the exogenous
noise case for I0 = 0.5nA, β = 5ms, σ = 1 and different values of τ (the other values are in
Table 1). (We do not take into account the reset mechanism.)

5. The model with exogenous noise

In the exogenous noise case (b), the covariance function of η is given by

cη(s, t) =
σ2

2τ
e−|t−s|/τ. (5.1)

As we specified before, in this case the process η is stationary and, as we can see from Eq. (5.1), the
function cη(s, t) depends only on |t − s|. Moreover, the covariance factors can be chosen as

h1(t) =
σ

2
et/τ, h2(t) =

σ

τ
e−t/τ,

while the ratio r and the function ρ(t) := r(t) − r(0) are given by

r(t) = h1(t)/h2(t) =
τ

2
e2t/τ, ρ(t) = r(t) − r(0) =

τ

2
(e2t/τ − 1).
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Hence, by using the representation of η(t) given in Eq. (4.3) and the fact that W̃(r(t)) d
= W̃(ρ(t)) +

W̃(r(0)), we obtain from (4.1):

V(t) d
=V0 −

∫ t

0

gL

Cm
[V(s) − VL]ds +

1
Cm

∫ t

0
I(s)ds

−
1

Cm

[∫ t

0
mη(s)ds +

∫ t

0
h2(s)W̃(ρ(s))ds + W̃(r(0))

∫ t

0
h2(s)ds

]
where W̃(r(0)) is not almost surely 0 and it is correlated with

∫ t

0
h2(s)W̃(ρ(s))ds. Let us also recall that

this time, even if we use a different Brownian motion W̃, we only obtain equality in law.
Here, by still using Proposition 1, we can also obtain the mean and the covariance function of V .

Corollary 2. The stochastic process V(t) of model based on Eqs.(2.1)-(2.2) with V0 a real number,
η0 = σ

τ

∫ 0

−∞
e

s
τ dW(s), η∞ = 0 and I(t) as in Equation (2.10) has the following mean function (for

β, τ , θ)

E[V(t)] = V0e−
t
θ + VL(1 − e−

t
θ ) +

βθ

α1Cm
I0(e−

t
β − e−

t
θ ) (5.2)

and covariance function for t ≥ s

Cov[V(t),V(s)] =
σ2θ2

2C2
mα2

[
−
θ

α3
e−

t−s
θ −

τ

α3
e−

t
θ−

s
τ −

τ

α3
e−

s
θ−

t
τ +

τ

α3
e

t−s
τ + e−

t+s
θ

]
(5.3)

where we set θ = Cm
gL

, α1 = β − θ, α2 = τ − θ and α3 = τ + θ.

Proof. To obtain Eq. (5.2) we just have to use (3.2), recalling that I is given in Eq. (2.10) and E[η(t)] =

0 for any t ≥ 0.
For Eq. (5.3), one just have to use (3.3) where cη is given in (5.1). �

From the expression of the covariance in (5.3), we can exploit the variance function

D[V(t)] =
σ2θ2

2C2
mα2

[
α2

α3
−

2τ
α3

e−
α3
τθ t + e−

2t
θ

]
where θ, α2, α3 are defined in Corollary 2.

It is important to observe that since E[η(t)] = 0, the mean function of V does not depend on τ.
Moreover, it admits an horizontal asymptote given by limt→+∞ E[V(t)] = VL. A plot of the mean
function is given in Figure 2 (left). Moreover, since also in this case limt→+∞D[V(t)] = σ2θ2

2C2
m(τ+θ) , the

horizontal asymptote of the variance function decreases as τ increases, as it can be seen in Figure
2 (right). From Figure 4, we can conclude that even in this case, while the variance is lower, the
covariance decreases slowly as τ increases.

Comparing plots in Figure 1 and Figure 2 it is possible to see how the values of τ affect the behaviour
of the variance functions in both cases of noise. Furthermore, in Figure 3 and in Figure 4, as τ varies,
the effects on the surfaces of the covariance functions are also put in evidence.
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Figure 3. Contour map of the covariance function of V in the endogenous case for σ = 1
and different values of τ: 100ms on the left, 150 ms in the middle and 200ms on the right
(the other values are in Table 1).

Figure 4. Contour map of the covariance function of V in the exogenous case for σ = 1 and
different values of τ: 100ms on the left, 150ms in the middle and 200ms on the right (the
other values are in Table 1).

6. Simulations and firing densities estimates

Suppose we want to simulate the process V(t) which is part of the solution of the equationsdV(t) = −
gL
Cm

[V(t) − VL]dt − η(t)
Cm

dt +
I(t)
Cm

dt, V(0) = V0

dη(t) =
[
−
η(t)−η∞

τ

]
dt + σ

τ
dW(t), η(0) = η0

where I(t) is a sufficiently regular function (in our case I ∈ C∞). η(t) is an Ornstein-Uhlenbeck process,
hence its paths are β-Hölder continuous almost surely for any β < 1

2 .
Specifically, the noise η(t) is defined on some filtered probability space (Ω,F ,Ft,P) hence we have
that for ω ∈ Ω, V(·, ω) is the realization of the process V related to the random event ω. If we fix ω ∈ Ω

(hence if we consider a single realization of V), the equation

dV(t, ω) = −
gL

Cm
[V(t, ω) − VL]dt −

η(t, ω)
Cm

dt +
I(t)
Cm

dt

is a linear non-homogeneous and non-autonomous Ordinary Differential Equation (ODE) that could
be written in the form

V̇(t, ω) = −
gL

Cm
[V(t, ω) − VL] −

η(t, ω)
Cm

+
I(t)
Cm

.
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Let us then fix

f (t, x, ω) = −
gL

Cm
[x − VL] −

η(t, ω)
Cm

+
I(t)
Cm

to write the ODE as
V̇(t, ω) = f (t,V(t, ω), ω).

However, f (t, x, ω) is only β-Hölder continuous in t (except for a null-set with respect to ω) for β < 1
2 ,

hence the classical Euler scheme could not converge. Indeed, to assure convergence of a classical
numerical scheme, one needs some regularity assumptions on f , not only with respect to x (which are
needed to assure the existence of the solution), but also with respect to t. In this case, the β-Hölder
continuity of f could be not enough to guarantee the convergence of a classical Euler scheme and then
we decide to adopt a Monte-Carlo based scheme. Indeed, since f is a Caratheodory function, we can
still use a random Euler scheme (as done in [26]). However, to use this scheme we should know exactly
the values of η(t, ω). Indeed the random Euler scheme is based on a Monte-Carlo quadrature algorithm
(see [26] for details), in which the integrand function has to be evaluated in uniformly distributed
random times inside the integration domain. Thus, since we need to numerically simulate also η (with
an Euler scheme as exploited in [36]), we have to consider approximatively uniformly distributed
random times. The idea of the algorithm is the following: we first simulate η(t) with a classical Euler
scheme in a finer lattice; then we simulate V(t) by using the random Euler scheme given in [26] where
the random times for the Monte-Carlo quadrature procedure are chosen on the simulation lattice of η(t).

The simulation scheme.

Hence, to simulate the process, let us fix three natural numbers δ, ε,m with δ < ε and let us define
∆t = 10−δ and ∆s = 10−ε (in particular ∆s is a finer time step with respect to ∆t and ∆t/∆s ∈ N, while
the choice of m is linked to the precision of the Monte-Carlo quadrature scheme). Moreover, let us
denote Vn = V(n∆t) and ηl = η(l∆s).

Step 1 Initialize V0 and η0;
Step 2 Suppose we have simulated Vn and ηl such that n∆t = l∆s. We want to simulate Vn+1;
Step 3 Simulate ηh until h∆s = (n+1)∆t: to do that suppose we have already simulated ηh−1 and simulate

ξ ∼ N(0, 1), then pose

ηh = ηh−1 −
∆s
τ

(ηh−1 − η∞) +
σ

τ

√
∆sξ;

Step 4 Simulate a vector U = (U1, . . . ,Um) of i.i.d. uniform random variables in [0,∆t];
Step 5 Consider the values Ũi obtained from Ui by rounding up the ε-th decimal digit;
Step 6 Simulate the value Vn+1 as

Vn+1 = Vn −
gL

Cm
[Vn − VL]∆t +

∆t
mCm

m∑
h=1

(I(l(h)∆s) − ηl(h))

where l(h) is defined in such a way that l(h)∆s = n∆t + Ũh for h = 1, . . .m;
Step 7 Return to Step 2.
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Table 1. Values of parameters for simulations.

Membrane capacitance Cm = 1µF/cm2

Resting membrane potential VL = −70mV
Initial membrane potential V0 = −70mV
Threshold membrane potential Vth = −50mV
Muscarinic membrane potential VK = −90mV
Leak conductance gL = 0.1mS/cm2

Muscarinic conductance gM = 0.1mS/cm2

Characteristic time of the membrane θ = 10ms
Maximal characteristic time τmax = 20ms
Initial current I0 = 3nA
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Figure 5. Simulated sample paths of V in the endogenous noise case for β = 200ms, σ/τ =

0.1 and different values of τ: 150ms on the left and 200ms on the right (the other values are
in Table 1). The mean function is plotted with a blue line while the dashed ones represent a
confidence interval of the 99%. Since we want to simulate only the process, without focusing
on the reset condition, we pose δη = 0.

In particular observe that the quantity l(h) ∈ N is well-defined. Indeed, since Ũh is rounded up to the
ε-th decimal digit, it can be written as Ũh = uh10−ε with uh ∈ N. Thus ∆t = 10−δ = 10−ε10ε−δ where
ε − δ > 0, and ∆s = 10−ε; finally l(h) = n10ε−δ + uh.
Finally, let us remark that the reset mechanism can be easily implemented by controlling whenever the
simulated process Vn exceeds the threshold Vth.

Some simulation results

As example, we produced some sample paths of V by using such algorithm in the endogenous
noise case, without considering the reset mechanism. These paths are shown in Figure 5, together with
a representation of their mean function and a confidence interval determined by using the variance
function.

To give an estimate of the error, let us denote with Vn the sample mean of a certain number of
simulated processes at the time tn and Dn their sample variance. We will give a measure of the error in
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Figure 6. Simulated probability density function of the first passage time of V in the endoge-
nous noise case for β = 200ms, σ/τ = 0.1 and different values of τ (the other values are in
Table 1).

terms of maximum relative error, that is to say the quantities.

EM = max
n≥1

|Vn − E[V(tn)]|
|E[V(tn)]|

, ED = max
n≥1

|Dn − D[V(tn)]|
D[V(tn)]

.

In particular we will compare our simulation algorithm with the classical Euler scheme, which is given
by

Vn+1 = Vn −
gL

Cm
(Vn − VL)∆t −

ηn

Cm
∆t +

I(tn)
Cm

∆t;

ηn+1 = −
ηn − η∞

τ
∆t +

σ

τ
ξn

√
∆t

where ξn is a standard normal random variable. It is interesting to see that since the first step in Vn of
Euler method is given by

V1 = V0 −
gL

Cm
(V0 − VL)∆t −

η0

Cm
∆t +

I(t0)
Cm

∆t

where V0 and η0 are fixed real numbers, V1 is always deterministic, thus D1 = 0 and we have ED ≥ 1.
As we can see from Table 2, the maximum relative error with respect to the mean EM seems to be stable
at almost 0.1% for our simulation algorithm, while it is almost 1% with the classical Euler scheme.
Moreover, it is interesting to see that even for m = 1 the maximum relative error with respect to the
variance ED is lower that the one of the Euler scheme. In particular, such error decreases as m increases
up to m ' 50, reaching ED ' 1.6%.
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Table 2. Maximum relative errors for δ = 1, ε = 3 and different values of m, determined on
10000 simulated trajectories. For the classical Euler scheme, we put ∆t = 0.1ms. Moreover
β = 200ms and σ/τ = 0.1, while the other values are in Table 1.

m EM ED

1 0.001107844 0.499877
5 0.001048744 0.1214291
10 0.00126541 0.06886903
50 0.0009804761 0.0162239
100 0.0009565757 0.0274757
Eul 0.01117287 1

Such simulation algorithm can be useful to estimate the FPT of V . Indeed, in Figure 6 we have
shown some simulated pdf of these FPT for three different values of τ. In this figure we can see how
different values of τ produce different pdfs. In particular as τ increases, we can see from this figure
that the mode of the FPT shifts to the right. However, a more careful and appropriate analysis of the
FPT densities has to be carried on to study how τ affects such functions.

7. Conclusions

We have considered a modification of the LIF model with a colored noise which could represent dif-
ferent neuronal mechanisms (such as gating variables or correlated noise for an injected current). This
model is described is Section 2 and is constituted of two coupled equations: a linear SDE and a linear
ODE with an irregular term. Moreover, in this section we described the different reset mechanisms for
the modelling process. In Section 3 we study some general properties of solutions of these coupled
equations. In particular, we distinguish between an endogenous noise (in Section 4) and an exogenous
noise (in Section 5), and we determine the mean, the covariance and the variance functions of the
process V(t) in such cases obtained by adopting a non-stationary and stationary Ornstein-Uhlenbeck
process, respectively. Finally, in Section 6 we provide a simulation algorithm for such process, in
which we had to keep in mind the irregularity of the terms of the ODE. Such simulation algorithm can
be used to obtain some numerical approximation of the FPT of V(t) to a threshold. This last simulation
also gives us a validation of the usability of the model. Indeed, the parameters described in Table 1
and β are intrinsic of the problem we are studying, while σ and τ should be estimable parameters (σ is
linked to the variability of the process, hence it can be estimated by using the spread of the pdf of the
FPT). The simulations of the FPT cast light on the effect of τ: as τ grows the mode of the pdf of the
FPT shifts to right. Hence τ is an observable parameter and it could be estimated from the observation
of the FPTs.
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A. An equivalent model with the current term included in the colored noise.

Another interesting choice for the input current is given by

I(t) =
e−

t
τ

τ

∫ t

0
e

s
τ S (s)ds (A.1)

for some stimuli s 7→ S (s). In this case, supposing η∞ = η0 = 0 we could consider the process
ξ(t) = −η(t) + I(t) which solves the equation

dξ(t) =
S (t) − ξ(t)

τ
dt +

σ

τ
dW(t), ξ(0) = −η(0) + I(0).

This kind of stimuli has been considered in [23] to describe the case in which the input current received
by the neuron has already been codified by other neurons in the network. In particular we have the
following equivalence.

Proposition 2. If I(t) is a C1 function then the model given by Equations (2.1)-(2.2) is equivalent to
the one given by

dV(t) = −
gL

Cm
[V(t) − VL]dt +

ξ(t)
Cm

dt, V(0) = V0 (A.2)

dξ(t) =

[
S (t) − ξ(t)

τ

]
dt +

σ

τ
dW(t), ξ(0) = ξ0, (A.3)

that is to say:

i For any I ∈ C1 there exists a continuous function t 7→ S (t) such that if V(t) is solution of (2.1)
then V(t) is also solution of (A.2);

ii For any S ∈ C0 there exists a function I ∈ C1 such that if V(t) is solution of (A.2) then V(t) is
also solution of (2.1).

Proof. We gave a closed form for the solution of (2.1) in Equation (3.1). Moreover, we have a closed
form for the solution of (A.2) given by

V(t) = V0 e−
t
θ + VL

[
1 − e−

t
θ

]
+

e−
t
θ

Cm

∫ t

0
e

s
θ ξ(s)ds. (A.4)

Hence if we want V to be solution of (2.1) and (A.2) simulaneously, we need

e−
t
θ

Cm

∫ t

0
e

s
θ ξ(s)ds = −

e−
t
θ

Cm

∫ t

0
e

s
θ η(s)ds +

e−
t
θ

Cm

∫ t

0
e

s
θ I(s)ds (A.5)
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that is implied by ξ(t) = I(t)−η(t). Moreover, we gave a closed form for a solution of (2.2) in Equation
(3.4). We can also give a closed form for a solution of (A.3):

ξ(t) = e−
t
τ

[
ξ0 +

1
τ

∫ t

0
e

s
τ S (s)ds −

σ

τ

∫ t

0
e

s
τ dW(s)

]
(A.6)

where the − sign can be substituted to the + by symmetry of the Itô integral term. Hence, to obtain the
relation ξ(t) = I(t) − η(t), one has to pose ξ0 = −η0, and

I(t) = −η∞(1 − e−
t
τ ) +

1
τ

e−
t
τ

∫ t

0
e

s
τ S (s)ds. (A.7)

We have then showed ii, since Equation (A.7) gives us the function I we have to choose in order to
assure that a solution of (A.2) is also solution of (2.1).
To show i, suppose I ∈ C1 and observe that, from (A.7),∫ t

0
e

s
τ S (s)ds = τe

t
τ I(t) + τη∞(e

t
τ − 1).

Applying the time derivative operator to this equation we have

e
t
τ S (t) = e

t
τ I(t) + τe

t
τ I′(t) + e

t
τη∞

thus we finally have
S (t) = I(t) + τI′(t) + η∞

concluding the proof of i. �
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