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Abstract: This is an analytical solution of the two-dimensional non-isothermal mathematical model 

describing the change in the velocity profile of a cylindrical extrusion die. This solution is based on 

the following assumptions. The two-dimensional melt flow is asymmetric. A melt viscosity anomaly 

may take place. Heat generated by viscous friction is a factor affecting the melt flow. The melt flow 

moving towards the metering section is in a steady state. Neither mass forces nor inertia forces are 

present. Velocity gradients along the channel are neglected. The mathematical model was built up 

from the incompressibility equation, motion equations, energy equation, and the rheological equation. 

This model depicted a non-isothermal flow of rheological fluid moving through the cylindrical 

extrusion die. A diagram was drawn. It depicts the melt velocities at a die entrance in different cross-

sectional views. Computer testing was performed to verify the obtained solutions and compare them 

with the real extrusion process. Difference between calculated and experimental data was below 14%. 

Results allow concluding a matching of numerical results with experimental data, and so the 

possibility of using a built-up model in an extrusion die design for single-screw extruders. 
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1. Introduction 

A problem is to improve the calculation theory and methods that are applied to extrusion 

equipment. If solved, it can ensure the optimal design of extruder sections for the production of food 

of required quality [1–4]. From this perspective, mathematical modelling of extrusion process is of 

critical need. 

Because the quality of extruded article, as well as the extrusion machine operation, is largely 

dependent upon the function of a metering section, the analysis will touch upon the mathematical 

models of extrusion at the metering section. 

A common choice for the viscosity function is the power-law equation. It is easy to make 

calculations of flow and stress fields with the constitutive equation of the power-law generalized 

Newtonian fluid. For many polymer melts, < 1 values of the power-law index correctly capture the 

flow behaviour at high rates of deformation [5]. The overall predictions of the power-law generalized 

Newtonian fluid are found to be adequate when the information about the pressure drop and the flow 

rate is desired. This choice is even more relevant because the target parameters in this study do not 

include memory effects, relaxation time, or other elasticity effects. 

Based on the isothermal Newtonian flow model, James M. McKelvey derived an expression for 

the volumetric flow rate in the metering zone, m
3
/sec [6]: 
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Where: Q –volume rate of flow in the metering zone, m
3
/sec; zU –velocity component of barrel 

in z-axis direction (z-axis is oriented along the axis of a screw channel), m/sec; h –screw channel 

depth, m; W –channel width, m; н –Newtonian fluid viscosity, Pa s; P z  –pressure gradient 

along z -axis, Pa/m; ,d рF F –dimensionless shape factors concerning with the effect of h W on the 

flow ratio distribution. 

Solution to this flow problem generated an equation for productivity in metering zone. However, 

despite the ease of solving the equation, some shortcomings do not allow getting a full picture of a 

melt flow through the channel in the metering zone. These shortcomings are the accepted Newtonian 

flow, the focus just on the problem of one-dimensional isothermal flow, the neglected convective 

heat transfer, the quality of extruded article, etc. 

Rheological models provide the most accurate physical picture of the extrusion process [7–9]. 

The first close attempt to solve this problem was made by Z. Tadmor, R.V. Torner, et al. [10–12]. 

They introduced mathematical models for one-dimensional isothermal flow of a power-law fluid: 
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Where: Q –specific volumetric flow rate, m
3
/(sec·m); oV –velocity in the direction parallel to 

the moving plate, m/sec; H –screw channel depth, m; G –dimensionless pressure gradient; 

1s n  (or 1 m )–reciprocal of exponent in power-law flow; sign –sign of the function 

signG G G ;  –dimensionless longitudinal coordinate. 
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Where: Q –volume rate of flow, m
3
/sec; o –dimensionless coordinate with zero shear stress; 

o oy h  ; oy –coordinate of cross-section with zero shear stress, m; dP dx –pressure gradient, 

Pa/m. 

These models have a common drawback–no evaluation is implied for the quality of polymer 

melt and for the quality of extruded article, accordingly. Improving the quality of extruded article is a 

step essential for the improvement of processing operations. This problem can be solved by 

stabilising the key process parameters (volumetric flow rate, pressure, and temperature). 

The problem of a polymer melt flow in single-screw extruders was considered in a range of 

papers with due account for the effect of melt leaking out through the gaps [9,13–14]. This resulted 

in an analytical expression for the volumetric flow rate in the metering zone that takes into account 

die leakages. 
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Where: N –screw rotation speed, rpm; S –screw pitch, m;  –screw helix angle;  –flight 

clearance, m; zB –dimensionless pressure gradient in forward flow;  –ratio referring to pressure 

gradients acting in circulation flow. 

Even though viscosity anomaly was taken into account in model (4), it does not involve 

pressure drops in the channel and in the radial clearance. 

Tadmor made the following assumptions to simplify the model. The given process is stationary. 

The polymer tube is uniform. The polymer travels through the channel at a constant speed. The 

melting point is clearly defined. The channel curvature is not a factor to consider. A melting problem 

is reduced to a one-dimensional problem of heat and mass transfer [12]. However, such solution does 
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not provide an adequate examination of convective and diffusion mechanisms of heat transfer. 

Chang Dae Han suggested that the main reason for the difference between the calculated and 

the experimental data is the Tadmor's assumption about the infinite depth of a solid bed. According 

to Chang, his assumption entailed a misassessment of the temperature profile [15]. Therefore, he 

considered a solid bed between the barrel and the screw root. With this approach, he found the 

temperature distribution in the film mass (exponential law), and assumed that it does not change at 

melting. Hence, he was able to determine the screw temperature using the heat transfer equation. 

Papers considered above are devoted to the problem of one-dimensional flow, but this approach 

does not allow taking into account the effect of mixing and the effect of convective heat transfer. 

R.V. Torner introduced an iterative procedure of solving equations for melt in a melt zone. This 

practice was suggested as an addition to the already existing calculation method, which was applied 

to plasticizing extruders with conical units. Thus, he obtained a model of the two-dimensional non-

isothermal flow of a pseudo-plastic fluid [12]: 
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Where:  k l –polytropic efficiency dependent upon the location of a cross section on the flight 

axis; l –longitudinal coordinate of standard cross section, varying within 0 дl l  ; o –material 
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; оц –dimensionless coordinate with zero shear stress in 

circulation flow; дl –actual length of metering zone, m; b –temperature coefficient of viscosity, 

1/deg; 
 o

b T T
R e


 ; T –melt temperature, 

o
С;  –melt density, kg/m

3
; pc –specific heat of melt, 

J/(kgK). 

The solution of the two-dimensional problem only cannot give the extruder characteristics that 

will work or a temperature profile of the melt down the screw. 

V.V. Skachkov reviewed the existing methods of solving equations for melt in a melt zone [10]. 

The introduced parameter was the apparent melting heat. This parameter took into account that extra 

energy necessary to heat the melt to the average film temperature. The flow rate was found to be the 

strongest factor affecting the melting process; its effect was stronger than the effect of the number of 

rotations and effect of the barrel temperature. 

Pervadchuk V.P. coined a theory of polymeric materials melting in the plasticizing extruders. 

According to this theory, one has to solve complete equations for the conservation of mass, 

momentum, and energy [16–17]. Piecewise constant approximation of changes in longitudinal 

velocity allows reducing the solution of the three-dimensional stationary problem to the two-

dimensional non-stationary one. The qualitatively new characteristics of melting were obtained. By 
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qualitatively new, one should understand the shape of a solid film mass, velocity and temperature 

profiles, etc. However, the problem that was solved applies only to the Newtonian fluid and to a 

constant screw channel height. 

Therefore, in the single-screw extrusion, one of the most important issues is to build a 

mathematical model that would allow him/her to predict the quality of extruded article and to take 

into account the required quality indicators when calculating or selecting the geometry of a screw. 

Yet, melt behaviour in the forming channels of a die and in the metering section is insufficiently 

studied. Therefore, it is essential to build mathematical models of extrusion that would describe the 

change in temperature/pressure and in the average velocity of the fluid travel in the zone. This 

necessity rises from the fact that these parameters have the direct effect on the quality of a finished 

product and on the quality of the extruder operation. 

The purpose of this article is to present an analytical solution to the two-dimensional non-

isothermal mathematical model describing the change in velocity profile of a cylindrical extrusion 

die. 

2. Materials and methods 

Rheological melt flow is pushed through the channel to the metering section of a die, and then it 

is pressed out through the die cavities. To study the melt flow in the cavity of a die, let us consider 

the flow of a fluid in a stepped cylindrical channel (dimensions: length l1 and diameter d1; length l2 

and diameter d2. d1 > d2). Let the melt flow in the die body to be known and stationary. 

Extrusion process was investigated on grain crops in the single-screw extruder KMZ (Figure 1). 

The investigation over complex mixtures was performed using the experimental single screw 

extruder EUM-1 (Figure 2). 

To assess the nature of changes that occur in the structure of material at extrusion, the focus was 

laid on the qualitative changes that emerge in crops along the work chamber of the single-screw 

extruder (Figure 3). 

The pre-moistened raw material enters the feed section, where it is mixed to thickening. When 

this happens, air between the particles of the product is squeezed out to some extent. In the feed 

section, coarse-grained particles have voids between them. In the compression section, particles are 

under significant mechanical stress that causes them to deform throughout the volume. At the same 

time, internal stress increases in a stepwise manner. When it reaches the point above the compressive 

strength, the fracture of biopolymers and cellular particles becomes stronger, enabling the 

compaction and the beginning of melt formation. 

In the homogenization zone, a homogeneous melt is formed with a small number of particles 

that have not yet melted. 

In the metering section, which has the pressure stabilisation and pressurization function, with 

temperature maintained at 120 to 190 °C, the product becomes plastic (homogenization completed). 

The insignificant traces of unmelted starch kernel are associated with the incomplete denaturation of 

protein molecules, especially globular ones. Thus, the properties of an extruded product depend on 

both the starch phase and the protein phase. The product that came out of the extruder was porous, 

with a slight decrease in mechanical strength. 
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Figure 1. KMZ-2U extruder chart: 1base; 2motor; 3driver pulley; 4belt; 5driven 

pulley; 6shaft; 7stud; 8flight; 9body; 10frame; 11feed drive motor; 12gearbox; 

13chain drive; 14drive feed screw; 15housing; 16bearing assembly. 

 

Figure 2. EUM-1 extruder chart: 1–adjustable base leg; 2–frame; 3–motor; 4–drive 

sprocket; 5–chain; 6–driven sprocket; 7–bearing cover; 8–bearing body; 9–control 

cabinet; 10–die head; 11–die body; 12–screw; 13–work chamber. 
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Figure 3. The pattern of product transformation at extrusion. 

Histological studies of the extruded material structure revealed that in the heating zone, where 

the heating elements are located, physicochemical parameters of initial mixtures did not significantly 

change. Large particles were dense, with uneven edges, while smaller particles were more spherical 

in shape. 

A system of differential equations for non-isothermal flow can be applied to each k-th channel. 

For an asymmetric flow, modelled as the two-dimensional flow, tangential velocity component 

equals to zero. Because the melt flow is stationary, the viscosity anomaly is present, and the melt 

itself is incompressible, the differential equations (if small mass forces are ignored) can be written in 

the cylindrical coordinate system as: 

Incompressibility equation [13]:  
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Energy equation: 
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Where: Ф–dissipation function, characterizing the conversion of kinetic energy into heat energy:  
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For a continuous flow, a rheological equation was used, expressed through a generalized power 

law: 
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Where: о, m–material constants; –temperature coefficient of viscosity; I2–quadratic strain rate 

tensor,  
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To reduce the order, (1)–(7) were expressed as the alternating current  
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and vorticity : 
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Then, incompressibility Eq (1) will be accomplished automatically. 

Let us transform motion equations using vorticity and current variables. For this purpose, Eq (7) 

was differentiated with respect to z, and Eq (8)–with respect to r. Results from the differentiation of 

Eq (8) was subtracted from the results that were obtained in differentiation of Eq (7). 
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Expression on the left of (6) will be: 
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By subtracting (15) from (16), one will get: 












































































































rzzrzrzrzrzr

zrzzrrzr
z

zr
r







2

2

2

2

22




































 







zrzr

zr
zr .

zrrrrz








































 
    (17) 

Expressions on the right of (6) and (7) were done by analogy: 
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Equation (18) was transformed by grouping: 
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Thus, in current and vorticity coordinates, motion equation will take the following form: 
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Where: S is determined by (20). 

In new coordinates, energy equation will be as follows: 
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Equations (19) and (22) were complemented by equation for vorticity , which in a cylindrical 

coordinate system: 
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Thus, a system was built up from three Eqs (19), (22) and (23)—equations for current , 

vorticity  and temperature Т that require boundary conditions: 
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0TT
Rr



,                                                               (26) 

Where: Т0–barrel wall temperature, v0 – inlet velocity. 

Initial melt temperature is assumed to be distributed across the cross-section uniformly and to 

be equal to Т0 
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Aside from that, symmetry condition was given for functions z, r, and T: 
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For current and vorticity variables in (24–28), conditions are as follows: 

At channel inlet 
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At inside barrel wall 
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0TT
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For vorticity, boundary condition can be determined from equation for a current: 
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It was assumed true for the zone before the boundary. 

To determine vorticity at the boundary, 0
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met. This can be accomplished using a finite difference scheme for a system of equations: 
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With new variables 

/ эr r R , / эz z R ,                                                     (33) 

and with new values of velocity 0, pressure P0, temperature Т0 and viscosity 0, dimensionless 
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can be determined. 

With (33) and (34), Eqs (21) and (22) and boundary conditions (29)–(32) can be written in a 

dimensionless form: 

Equation for a current function (general equation of motion) 
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energy equation 
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vorticity equation 
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temperature boundary conditions 
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conditions along the axis of symmetry 
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Thus, a mathematical model was built for a non-isothermal flow of rheological fluid in a 

cylindrical channel. Expressions assume 00  эRRe (Reynolds number);  cTEc 0
2
0  

(Eckert's number);  эRcPe 0  (Peclet number). 

In (37), functionФ  is as follows: 
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Where: 
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In Eq (35), S function is nonlinear and contains terms with first and second order derivatives 

of viscosity function  that characterizes viscosity profile of the melt. The structure of S function 

can be selected by modelling the melt flow in the channel using (35)–(43). 

When fluid flows out of an adapter channel with a larger diameter into a die cavity of a smaller 

diameter, a flow forms at a relatively large distance before entering the die. With a certain velocity 

profile, fluid flow that is entering the metering section transforms into a parabolic one in a stepwise 

fashion. It is a common case when the melt accumulates in dead spots and flows in circulatory 

motion, forming vortices. 

As can be seen from the mathematical model (35)–(43), process patterns depend on many 

parameters: Rheological characteristics of melt, channel size, and geometry, thermal, physical and 

hydraulic properties of the melt, and parameters affecting the process flow (boundary and initial 

conditions). The flow rate profiles of the melt at a die exit can also be calculated. 

Because the mathematical model of a melt flow includes (35)–(43), the finite difference 

method was applied for numerical implementation. This method was the one settled on because 

the analytical solution is very difficult to generate and numerical methods are applied mainly to 

rheological melts [13–14,18]. 

With the axis of symmetry of the channel, the following system can be drawn (Figure 1). 

Figure 4 depicts some channel that is followed by the die inlet. This channel has some radius Rc 

and some length Lc. To analyze the formation of dead spots near the die, we assumed that the 

velocity profile of a melt flow in the section is uniform. Such an approach can be applied if the 

condition Rc >> Rd (3–5-fold, approximately) is met [7–8,19]. 

The problem-solving algorithm was considered on a uniform grid. Some domain D was gridded 

uniformly (grid step Hz and HR with respect to z and R, respectively) (Figure 5). 
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Figure 4. The melt flow formation in the metering section: A model. 

 

Figure 5. A grid model of domain D (CМD) for calculating melt flow near the die cavity: 

o–internal nodes; -border nodes. 

Let rd be the radius of a die cavity, and lc, rc be the channel length and radius in the metering 

section. The radius of a die cavity Re was taken as an equivalent to rd in order to solve the problem: 

.de rR                                                               (49) 

Thus, dimensionless geometry of a channel in the metering section can be found: 

./,/,/ eddeccecc RrRRlLRrR                                 (50) 

For definiteness, let us assume that channel radius rв is tied to the radius of a die cavity: rв = KR 
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rм, where KR–integer (proportionality factor). 

Let us determine the grid domain D: 

 RzRjzi N,j,N,i),H)j(R,H)i(Z:D 1111  ,                   (51) 

Where:  

,nKN;nN;n/H;n/LH RRRzzRRzвz 111               (52) 

Where: nz–number of grid steps along the Z-axis; nR–number of grid steps along the R-axis, 

divides channel radius. 

Figure 2 shows boundaries of domain D, which may take the corresponding boundary 

conditions: 

At B1 –initial conditions (temperature, vorticity, and current); 

At B2. B3 –first-order boundary conditions, conditions related to adhesion, or the lack of 

adhesion, at rheological melt/channel wall interface; 

At B4 –condition characterizing melt flow in the channel through the die; 

At B5 –starting point for setting symmetry conditions for flow parameters. 

For discretisation, (35)–(38) were re-written as follows: 

Equation for current function 

,S
rz

r
r

r
Rezrrz

03
2

2

2

2














































 




      (53) 

Where:  

r/  ;                                                         (54) 

energy equation 

0
2

2

2

2















































Фr

r

T
r

r

T

z

T
r

r

T

zz

T

r
r


,         (55) 

Where: ;Pe/r 1  

vorticity equation 

0
1 2

2

2

2

2














 


r
rrrz

,                                      (56) 

Where:   is determined by (46), Ф,S –by (36) and (44), respectively. 
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Let us introduce the grid functions ijijij and  ,, into the (i, j) node (Figure 2) (functions 

correspond to Tandi ,,   ): 

);R,Z(T);R,Z();R,Z( jiijjiijjiij                       (57) 

.R)j,i,R,Z,,(ФC);j,i,R,Z,,(SB);j,i,R,Z,,(
Re

A jijijij   
1

   (58) 

Below are designations for discretisation of derivatives: 

z

iji
ijz

H

uj,u
UD




1
,  

R

ijj,i
ijR

H

uu
UD




1
 (right-hand differences), 

z

j,iij
ijz

H

uu
UD

1
 ,  

R

j,iij
ijR

H

uu
UD

1
  (left-hand differences),             (59) 

z

j,ij,i
ijz

H

uu
UD

2

11  
 ,  

R

j,ij,i
ijR

H

uu
UD

2

11  
  (central differences). 

For the second-order derivatives, expressions are the following: 

2

11 2

z

j,iijj,i
ijzz

H

uuu
UD

 
 , 

2

11 2

R

j,iijj,i
ijRR

H

uuu
UD

 
 .       (60) 

For mixed derivatives, designations are as follows: 













 







R

ijj,i

R

j,ij,i

z
ijzR

H

uu

H

uu

H
UD

11111
, 













 







R

j,iij

R

j,ij,i

z
ijRz

H

uu

H

uu

H
UD

11111
, 













 







R

j,ij,i

R

j,ij,i

z
ijzR

H

uu

H

uu

H
UD

1111111
, 













 







R

j,ij,i

R

ijj,i

z
ijRz

H

uu

H

uu

H
UD

11111
, 
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











 







R

j,ij,i

R

j,ij,i

z
ijRz

H

uu

H

uu

H
UD

22

1 111111
, 













 







R

j,ij,i

R

j,ij,i

z
ijzR

H

uu

H

uu

H
UD

1111111
, 













 







R

j,ij,i

R

j,ij,i

z
ijRz

H

uu

H

uu

H
UD

111111

2

1
, 













 







R

j,ij,i

R

j,ij,i

z
ijzR

H

uu

H

uu

H
UD

222

1 11111111
.              (61) 

In (59)–(61), u can take one of the following values, "","",""  or  (  "","",""u  ). 

Formula (61) is used to calculate S . 

With designations (57)–(61) given for internal nodes  1212  Rz N,j,N,i , Eqs (48)–

(51) may be written as: 

  03  ijijRijzzjijRRjijijzijRijRijz BDDRDRADDDD  ;    (62) 

  0 ijijRRjijRijzzjrijzijzijzijR CDRDDRDDDD  ;    (63) 

0
111

2
 ijjijRR

j
ijR

j

ijzz
j

RD
R

D
R

D
R

 .                         (64) 

Steady-state equations, such as (62)–(64), are solved using an interactive method [7,17], which 

requires the introduction of some definitions. 

ij is given at B1, B2. and B3 (Figure 2): 

   321,,1 BBBjiij  ,                                                         (65) 

Where:  321 BBB  – set of nodes of B1, B2 and B3. 

Let 1beij  in other points of a grid model, namely on the domain, including boundaries: 

1ij  on D                                                             (66) 
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At channel inlet, boundary conditions are given as follows: 

22
1 jj R ; 01 j  at B2.                                            (67) 

At channel border: 

21
RiN  at B2.                                                      (68) 

21/jN z
      at B3,                                                 (69) 

plus symmetry condition 

01 i  at B5 .                                                        (70) 

Let us assume 

22
jij R                                                          (71) 

in all internal points of D. 

To determine the vorticity boundary conditions, boundary conditions for a vorticity function 

were approximated [14]: 

R

,i,i
j,

H2

8 32
1





  at B5,                                              (72) 

z

jNjN

jN
H

,z,z

z 2

8
32 





  at B3,                              (73) 

Let 0 beij  in all internal points of D. 

At free boundary (at the channel exit, B4): 

j,NjN zz 1
 ; j,NjN zz 1

 ; j,NjN zz 1
 .            (74) 

To solve (62)–(64), alternating direction method was used [9,14]. Let us explain its general 

structure on the example of two-dimensional operator steady-state equation 

Fu  .                                                                   (75) 

Let us change (75) to non-steady-state equation 
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Fu
u








,                                                          (76) 

Where: -iteration parameter, analogous to time period. Below is the alternative directions 

scheme: 

ijijRRijzz
zS

ijij
FuDu~D

uu~





,                                (77) 

ijijRRijzz
RS

ijij
FûDu~D

u~û





,                                 (78) 

Where: S–iteration index; RS, zS–iteration parameters that differ in direction.  

Thus, (75) was reduced to two tridiagonal systems of algebraic equations that can be solved by 

tridiagonal matrix algorithm. In (77) and (78), 
21 nuu~ , and 

1 nuû , so at the first run, 

fractional solution 
21nu  is found and put in the second run (run in other direction) to find desired 

solution 
1nu . 

With (77) and (78) in use, solution accuracy can be guided by the absolute criterion 

 ijij uûmax ,                                                       (79) 

or the fractional criterion 

1


ij

ijij

u

uû
max .                                                       (80) 

Thus, solution accuracy depends on grid parameters  and . Experimental calculations 

confirm the existence of grid parameters that are close to those optimal for small Reynolds 

numbers. These parameters allow obtaining an approximate solution with the least time [14]. 

They are selected by computer-based experiments. There are methods for calculating the optimal 

set of parameters for some problems [14]. 

Let us write equations with the alternative directions for vorticity fields, current function 

and energy in the internal points of D. 

I. System of vorticity Eq (7): 
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II. 

  ijijRijzzjijRRjij

ijzijRijRijzS
z

ijij

BD
~

DRDRA

DDD
~

D

~















3

,                                      (81) 

  ijijRijzzjijRRjij

ijzijRijRijzS
R

ijij

BˆD
~

DRˆDRA

DˆDD
~

D

~ˆ















3

,                                      (82) 

Where: 
S

R
S

z ,   –iteration parameters. 

Equations (81) and (82), regrouped by transfer of unknown terms to the left, as well as known 

terms to the right, are as follows: 

ijzijzzjijijRijzijS
z

W
~

DRAD
~

D
~








1

,                               (83) 

 
ijRijRijRRjijijzijRijS

R

WˆDˆDRADˆDˆ







 3
1

,             (84) 

Where: 

  ijijRijRRjijijzijRijS
z

z BDDRADDW
ij

 


 3
1

,                 (85) 

ijijzzjijijRijzijS
R

R B
~

DRAD
~

D
~

W
ij

 



1

.                                           (86) 

With (59)–(61), Eqs (83) and (84) may be written through ij : 

   
ijzj,iijj,i

z

jij
ijj,i

z

ijR
ijS

z

W
~~~

H

RA~~

H

D~










  1121 2
1

,       (87) 



2896 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2875–2905. 

   

 
ijRijj,i

R

ij

j,ijj,i

R

jij
ijj,i

R

ijz
ijS

R

Wˆˆ
H

A

ˆˆˆ

H

RA
ˆˆ

H

D
ˆ





















1

11121

3

2
1

      (88) 

or as a tridiagonal system of linear algebraic equations: 

ijzj,ij,iijijj,ij,i W
~~~

   1111 ,                    (89) 

ijRj,ij,iijijj,ij,i Wˆˆˆ
   1111 ,                   (90) 

Where: 

21

z

jij
j,i

H

RA
 ; 

2

21

z

jij

z

ijR

S
z

ij
H

RA

H

D









; 

21

z

jij

z

ijR
j,i

H

RA

H

D



 ;                                                                  (91) 

21

R

jij
j,i

H

RA
  ; 

R

ij

R

jij

R

ijz

S
R

ij
H

A

H

RA

H

D 321
2









; 

R

ij

R

jij

R

ijz
j,i

H

A

H

RA

H

D 3

21  


 .                                                            (92) 

I. System of equations for vorticity function (64): 

ijjijRRijR
j

ijzzS
z

ijij
RDD

R

~D

~








21



,                    (93) 

ijjijRRijR
j

ijzzS
R

ijij
RˆDˆD

R

~D

~ˆ








21



,                     (94) 

Where: R
S

z ,   –iteration parameters. 

With unknown terms of (93) and (94) regrouped to the left and known terms regrouped to the 

right, transformation will be as follows: 
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ijzijzzijS
z

W~D~








1

,                                                     (95) 

ijRijRRijR
j

ijS
R

WˆDˆD
R

ˆ 






11

,                                  (96) 

Where: 

ijjijRRijR
j

ijS
z

z RDD
R

W
ij





211

 ,                      (97) 

ijjijzzijS
R

R R~D~W
ij





21

 .                                         (98) 

With (59)–(61), Eqs (95) and (97) may be written through ij 

 
ijzj,ij,ij,i

z

ijS
z

W~~~

H

~







  112
2

11
,                    (99) 

   
ijRj,ij,ij,i

R

j,ij,i
Rj

ijS
z

Wˆˆˆ
H

ˆˆ
HR

ˆ 





  1121 2
111

  (100) 

 

or as a tridiagonal system of linear algebraic equations: 

ijzj,ij,iijijj,ij,i W~~~
   1111 ,                              (101) 

ijRj,ij,iijijj,ij,i W   1111 ,                            (102) 

Where:  

21
1

z

j,i
H

 ; 
2

21

z
S

z

ij
H




 ; 

21
1

z

j,i
H

 ;                           (103) 

21
1

R

j,i
H

  ; 
2

211

RRj
S

R

ij
HHR




 ; 

21
11

RRj
j,i

HHR
  .      (104) 
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II. System of energy Eq (63): 

  ijijRRjijRijzzjr

ijRijzijzijRS
z

ijij

CDRD
~

DR

DD
~

DD

~













 ,                         (105) 

  ijijRRjijRijzzjr

ijRijzijzijRS
R

ijij

CˆDRˆD
~

DR

ˆDD
~

DD

~ˆ













 ,                          (106) 

Where: 
S

R
S

z ,   –iteration parameters. 

With unknown terms of (105), and (106) regrouped to the left, and known terms regrouped to 

the right, transformation will be as follows: 

ijzijzzjrijzijRijS
z

W
~

DR
~

DD
~








1

,                       (107) 

ijRijRRjrijRrijRijzijS
R

WˆDRˆDˆDDˆ








1

,    (108) 

Where:  

  ijijRRjijRrijRijzijS
z

z CDRDDDW
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With (59)–(61), Eqs (109) and (110) may be written through ij 
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or as a tridiagonal system of linear algebraic equations: 
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3. Results and Discussions 

In this article, a flow of a biopolymer melt is considered a continuous medium. The change 

in the viscosity of such an anomalously viscous and incompressible fluid is described by the 

rheological Eq (11) and the description is accurate enough. The Eq (11) is expressed as a 

generalized power law. This model is intended to describe the movement of a pseudo-plastic 

fluid the shear stress for which is a parameter defined by the power rheology law. For these 

pseudo-plastic fluids, viscosity decreases with the increase in the velocity gradient. The 

verification of obtained solution showed high adequacy: The resulting model allows calculating 

the flow rates of the rheological fluid melt in different sections near the die cavity with the 

accuracy sufficient for engineering calculations (± 10%). Therein, the viscosity of a rheological 

fluid  changes. It decreases by 7%. 

The schemes of alternative directions were created to model vorticity fields (89–90), current 

function (99–100), and energy (113–114). These schemes were presented as a system of 

algebraic equations. For solving the problem, these equations must be supplemented with 

boundary conditions (67)–(74). 

The problem of melt flow in the metering section was presented in the form of the finite -

difference equations for vorticity, current function and energy (89), (90), (99), (100), (113), and 

(114). Because this problem is a large-scale problem, then solving it requires an iterative method 

or a sequence of steps. 

To model the flow of a rheological melt, Model 1 program was developed in Turbo Pascal 

7.0 under Windows 10. This program includes Ris and Glob modules. 

The Glob module is designed to set constants and variables used in the program. The Ris 
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module is to display graphs on the monitor, namely, graphs of velocities along the channel axis 

in various cross-sections. 

The key module, Model 1, calculates parameters of rheological melt flow in the metering 

section. 

Block 1 implies the initialization of variables and arrays, as well as the calculation of Re, Pe, 

Ec, K1, criteria of a difference grid step. Initial values are assigned to grid functions.  

At the iterative process start, temperature is assumed to be constant throughout the entire 

zone. The melt flows with initial velocity through the zone in a non-vortical motion, so the 

temperature was taken as 

,),(,2/)( DjiQQQ inletwallmij
                                     (117) 

Where: inletwall QQ , –temperature of channel wall and flow at the channel inlet, respectively;  

vorticity as ,D)j,i(,O
ijm  0  

current as .),(,0 DjiF
ijm   

Calculation results from model. rez file were used as input data in subsequent modelling. 

Block 2 implies the calculation of melt flow rate at channel inlet, which result is assigned to 

a switching variable. 

Blocks 3, 4, and 5 imply the melt flow determination. First, melt flow is determined in 

metering section, then vorticity and energy are determined. In any case, determination ends when 

accuracy criteria (79) and (80) are met at Eps=110
-6

 and ,10000Rz     

.1000RzRz      

Block 6 implies the calculation of the volume rate of flow Rashs though the die cavity. 

Block 7 implies the analysis of calculations: calculation either continues (return to Block 3), 

or is finished (move on to Block 8). Calculation is finished if the volume rate of flow through the 

die cavity overstrives that at the channel inlet. 

Block 8 implies the display of results on the monitor and the transfer of calculation results 

to the model. rez file. The velocity profiles for various sections of the channel are recorded in 

this file. The velocity profiles of various zones in the channel near the die cavity were displayed 

on the monitor. 
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Table 1. Initial data for calculation. 

parameter unit of measurement value 

Die cavity radius m 0.0020 

Inlet radius m 0.0060 

Inlet length m 0.0120 

Equivalent radius m 0.0060 

Inlet temperature K 433.0000 

Channel wall temperature k 453.0000 

Air pressure kPa 101.3250 

Inlet velocity in z-direction m/s 0.0300 

Rheological equation:  = 0 Pa/s 220.0000 

Rheological equation: m-const   0.9800 

Rheological equation: beta–const  0.0020 

Heat conductivity of melt W/(mK) 0.2200 

Specific heat capacity of melt J/(kgK) 1600.0000 

Melt density kg/m
3
 1200.0000 

Temperature conductivity coefficient m
2
/s 11.600e-8 

Eckert's number   0.124e-8 

Reynolds number  98.182e-5 

Peclet number  1570.9091 

K1 number*  25.0000 

z-coordinate increment   0.0270 

r-coordinate increment   0.0417 

Note: K1–dimensionless criterion equal to the ratio between channel inlet radius rinlet and die outlet length l: 

в
1

r
K

l
  
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Table 2. Calculation results. 

Coordinate 

R = r/ RЭ 

Coordinate Z = L/RЭ 

0.7800 1.0500 1.3200 1.5900 1.8600 2.0000 

0.000 1.6274 1.2378 0.7900 0.4262 0.1987 0.1701 

0.042 3.2898 2.4797 1.5711 0.8411 0.3729 0.3086 

0.083 4.9523 3.7217 2.3521 1.2560 0.5471 0.4471 

0.125 5.5369 4.1380 2.6036 1.3838 0.5825 0.4630 

0.167 5.8646 4.3486 2.7189 1.4357 0.5741 0.4331 

0.208 6.0998 4.4771 2.7765 1.4544 0.5415 0.3685 

0.250 6.2959 4.5634 2.8018 1.4540 0.4935 0.2644 

0.292 6.4762 4.6244 2.8057 1.4408 0.4388 0.0987 

0.333 6.6519 4.6678 2.7932 1.4181 0.3910 0.0000 

0.375 6.8281 4.6966 2.7664 1.3873 0.3663 0.0000 

0.417 7.0074 4.7121 2.7265 1.3494 0.3607 0.0000 

0.458 7.1905 4.7140 2.6738 1.3046 0.3574 0.0000 

0.500 7.3764 4.7011 2.6077 1.2529 0.3498 0.0000 

0.542 7.5629 4.6712 2.5279 1.1942 0.3371 0.0000 

0.583 7.7462 4.6216 2.4335 1.1283 0.3201 0.0000 

0.625 7.9187 4.5477 2.3227 1.0547 0.2998 0.0000 

0.667 8.0633 4.4402 2.1921 0.9721 0.2766 0.0000 

0.708 8.1327 4.2746 2.0306 0.8760 0.2497 0.0000 

0.750 7.9931 3.9816 1.8060 0.7525 0.2153 0.0000 

0.792 7.2924 3.3796 1.4316 0.5636 0.1620 0.0000 

0.833 5.2071 2.0434 0.7033 0.2191 0.0622 0.0000 

0.875 0.0679 -0.8862 -0.7924 -0.4637 -0.1388 0.0000 

0.917 -10.9755 -6.8679 -3.7565 -1.7952 -0.5320 0.0000 

0.958 -31.8098 -17.8692 -9.1308 -4.1914 -1.2358 0.0000 

1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Calculations were made for the rheological melt in a channel, which length was L = 12 mm, 

which diameter was D = 12 mm, and which die cavities had diameter (d) of 4 mm. The total 

number of difference grid nodes in D was NzR = 1875. The number of nodes in z-direction was 75, 

in R-direction–25. The z-coordinate increment was z = 0.027, while the r-coordinate increment 

was R = 0.0417. The melt flow rate at channel inlet was Rashs = 0.0905 m
3
/s, while at die cavity, it 

takes the value of Rashs = 0.0926 m
3
/s, so the error is 
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 = [(0.0905–0.0926)/0.0905]100% = 2.3%                                (118) 

Viscosity profile of rheological fluid  dropped from 265 to 248, down about 7%. Initial data 

and calculation results are given in Tables 1 and 2. Diagrams depicting velocities of rheological melt 

in various zones near the die cavity are shown in Figures 3 and 4. 

 

 

Figure 6. Flow velocity dependence on the relative radius in different cross-sections of 

the metering section (r/R): 1–2.00; 2–1.86; 3–1.9; 4–1.32; 5–1.05. 

 

Figure 7. The flow velocity profiles of the channel inlet in different cross-sections of the 

metering section (r/R): 1–2.00; 2–1.86; 3–1.59; 4–1.32; 5–1.05. 

Obtained model allows calculating the flow rate of rheological melt in various zones near the 

die cavity with sufficient accuracy ( 10%). 



2904 

Mathematical Biosciences and Engineering  Volume 16, Issue 4, 2875–2905. 

4. Conclusions 

This article provides a mathematical model of non-isothermal rheological fluid in a cylindrical 

channel of a die. Computer testing verified the obtained solutions for the compliance with a real extrusion 

process. Results allow concluding a possibility of using the built-up model in matrix design for single-

screw extruders [20–21]. The single-screw extruder is commonly used in polymer processing where the 

performance of the mixing section is significant in determining the quality of the final product. It is 

therefore of great interest to simulate the flow field in the single-screw extruder. The mixing performance 

of the extruder considerably influences the quality and morphology of the final product. For this reason, 

the flow field in the mixing section has been studied by a number of authors to gain a better 

understanding of the process. As an example of such work, you can give a link to the work [22]. Our 

work is different in that in the construction of our model we used more stringent boundary conditions, 

taking into account the biological nature of the polymer, implying the need for further use of the 

biopolymer extrudate as a food product. 
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