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Abstract: Oncolytic virotherapy is an emerging treatment modality which uses replication-competent
viruses to destroy cancers without causing harm to normal tissues. By the development of molecular
biotechnology, many effective viruses are adapted or engineered to make them cancer-specific, such
as measles, adenovirus, herpes simplex virus and M1 virus. A successful design of virus needs a full
understanding about how viral and host parameters influence the tumor load. In this paper, we propose
a mathematical model on the oncolytic virotherapy incorporating viral lytic cycle and virus-specific
CTL response. Thresholds for viral treatment and virus-specific CTL response are obtained. Different
protocols are given depending on the thresholds. Our results also support that immune suppressive
drug can enhance the oncolytic effect of virus as reported in recent literature.
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1. Introduction

Viruses that selectively replicate in tumor cells have recently demonstrated their potential use in
cancer treatment [1, 2, 3, 4]. Replicating oncolytic viruses are able to infect and lyse cancer cells and
spread through the tumor while leaving normal cells largely unharmed. A variety of viruses have shown
promising results in clinical trials [5]. Among the oncolytic viruses with potential use for virotherapy
are the adenovirus Onyx-015 [6], the herpes simplex virus HSV-1 [7], the Newcastle disease virus
NDV [8] and M1 virus [9].
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In order to have a complete understanding of how virus and host characteristics influence the out-
come of therapy, many mathematical models have been established. For example, in 2001, Wodarz
[10] established a mathematical model as follows.

x′ = rx(1 − x+y
k ) − dx − βxy,

y′ = βxy + sy(1 − x+y
k ) − ay − pvyzv,

zv
′ = cvyzv − bzv.

(1.1)

In this model, there are three variables, uninfected tumor cells x, infected tumor cells y by the
viruses and virus-specific CTL zv. The tumor cells grow in a logistic fashion at a rate r and die at a rate
d. The maximum size of space where the tumor is allowed to occupy is given by its carrying capacity
k. The viruses spread to tumor cells at a rate β. Infected tumor cells are killed by the viruses at a rate
a and grow in a logistic fashion at a rate s. The virus-specific CTL expands in response to antigen at
a rate cv and decays at a rate b. Hereafter, without specific indication, we denote by x, y, zv uninfected
tumor cells, infected tumor cells and virus-specific CTL response, respectively.

In [10], the authors mainly focused on the total tumor load by analyzing each equilibrium of Eq
(1.1). Certain equilibria particularly drew their attention. In the absence of the virus-specific CTL
response, they found

• an infection free equilibrium E0 = ( k(r−d)
r , 0, 0),

• a 100% virus prevalence equilibrium E1 = (0, k(s−a)
s , 0),

• and a coexistence equilibrium with both infected and uninfected tumor cells

E2 = (
βk(a − s) + ar − sd

β(βk + r − s)
,
βk(r − d) + sd − ra

β(βk + r − s)
, 0).

In the presence of the virus-specific CTL response, they found

• an equilibrium E3 = (0, b
cv
, kcv(s−a)−sb

pvkcv
) at which there is 100% virus prevalence in the tumor cell

population,

• a coexistence equilibrium with both infected and uninfected cells E4(x4, y4, zv4), where x4 =
r(kcv−b)−k(cvd+bβ)

rcv
, y4 = b

cv
, zv4 =

βk(rcv−bβ−cvd)−cv(ar−sd)−bβ(r−s)
pvcvr .

At equilibrium E0, the tumor is at its maximum size k(r−d)
r without virotherapy; At E1, all of the

tumor cells are infected and tumor size is given by x + y =
k(s−a)

s . If [βk(r − d) + sd]/r > a, then the
total tumor load equals to k(r−s+a−d)

βk+r−s at equilibrium E2. Wodarz claimed that there is an optimal choice
of virus cytotoxicity a =

s(d+βk)
r+βk which led to a minimum tumor load given by x + y =

k(r−d)
r+βk . Using the

same method, He examined equilibria E3, E4 to find the optimal choice for immune response rate c.
We note that in [10], the authors did not provide rigorous mathematical proofs of the stability of

equilibria mentioned above. Some experimental evidence shows that several different viruses inhibit
cellular replication after infection, see for example [11]. Henceforth, the growth term in infected
tumors is not considered in most of mathematical models, i.e. s = 0 [5, 12, 13].
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Recently, mathematical models with intracellular viral life-cycle have been formulated [14]. At
the molecular level, a great deal of phenomena about intracellular viral life cycles have been found
experimentally. Indeed, there are several stages in a typical viral life-cycle: viral entry, viral replication,
viral shedding and viral latency. For the details of the viral life-cycle, we refer the reader to [14, 15,
16, 17, 18, 19]. In [14], the model is formulated as


x′ = rx(t)(1 − x(t)+y(t)

k ) − bx(t)v(t),
y′ = bx(t − τ)v(t − τ) − ay(t),
v′ = aδy(t) − bx(t)v(t) − γv(t)

(1.2)

where v is the free virus particle, the time period of the lytic cycle is described by τ, k is the maximal
tumor size, r is the per capita tumor growth rate. The coefficient b represents the infectivity of the
virus. The coefficient a is the death rate of infected tumor cells, and γ is the virus clearance rate. The
parameter δ is the burst size of the virus.

We point out that the variable y in Eq. (1.2) is the number of infected tumor cells in the last stage of
lytic cycle, which is infective and slightly different from the one in Eq. (1.1). Also, note that Eq. (1.1)
are only accurate if the death rate of newly infected cells in the first stage of the lytic cycle (eclipse
phase)[20], here referred to as I(t), is zero. More generally, if n denotes the death rate of these infected
tumor cells, then the term bx(t − τ)v(t − τ) in the second equation of Eq. (1.2) should be replaced by
b exp{−nτ}x(t− τ)v(t− τ), where exp{−nτ} represents the survival rate during this period. Observe that
then I(t) =

∫ t

t−τ
e−n(t−s)bx(s)v(s)ds. Technically, density dependence in tumor growth should include

all tumor cells, e.g. x(t) + I(t) + y(t) in the equation for x. However, including this term would then
require including an equation for I(t) in the model, a serious mathematical complication. If τ is small,
I(t) should also be small so we may neglect I(t) in the logistic term. For these reasons, we leave the
logistic term as in [14].

We assume that the turnover of free virus is fast compared to that of infected cells. Similar to [21],
using a quasi-steady state assumption we assume that infected tumor cell density is proportional to
virus density, thereby allowing us to drop the equation for virus. Thus, Eq. (1.2) can be reduced as
below:

{
x′ = rx(t)(1 − x(t)+y(t)

k ) − dx(t) − bx(t)y(t),
y′ = b exp{−nτ}x(t − τ)y(t − τ) − ay(t).

(1.3)

In oncolytic virotherapy, the effect of immune response is indispensable and can not be neglected.
Experiments with injecting mutant herpes simplex virus 1 (hrR3) into glioma implanted in brains of
rats show the lack of efficacy in eradicating the cancer, due to interference by the immune system
[22]. In other words, the presence of free virus will lead to the virus-specific CTL response that will
kill infected tumor cells. Similar to the idea of Wodarz [10], virus-specific CTL response will also be
involved in our model.

According to discussions above, the schematic representation of the assumptions underlying the
mathematical models is drawn as follows.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1836–1860.
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Figure 1. Schematic representation of the assumptions underlying the mathematical models.
Reproduction of uninfected tumor cells is modeled by a logistic term where density depen-
dence includes the density of infected cells. Uninfected cells are infected by contact with
infected tumor cells (y) at rate proportional to the product of their densities. The newly in-
fected cells, I(t), first enter the eclipse phase, where the cells are infected but not yet actively
producing virus. After an average time τ, the cells transition to the infectious phase, y. Then
infected cells stimulate CTL response and are killed by viral lysis at rate pyz.

Very recently, research on increasing the oncolytic effect of M1 virus indicated that a classical
protein kinase A (PKA) inhibitor, H89, inhibits the innate antiviral response [23]. Some other immune
suppressive drugs are reported in [1, 22]. From this point, we think that the strength, defined by c

d , of
virus-specific immune response can be controlled by immune suppressive drugs. In this paper, we will
support that the use of immune suppressive drugs will benefit the oncolytic effect of virus as reported
in clinic results [23].

In the next section, we propose a new mathematical model based on the schematic diagram 1.
Main mathematical results are listed in Table 2 and Table 3. Numerical simulations and biological
interpretations will be given in Section 3. Section 4 is devoted to the rigorous mathematical analysis
of our main results. In the last section, we will give optimal strategies in tumor therapy in different
situations.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1836–1860.
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2. Materials and method

As has been stated in the previous section, our model will have the following form

x′(t)︸︷︷︸
Uni f ected cells

= rx(t)(1 −
x(t) + y(t)

k
)︸                    ︷︷                    ︸

Proli f eration

− bx(t)y(t)︸   ︷︷   ︸
In f ection

,

I′(t)︸︷︷︸
Eclipse Phase

= bx(t)y(t)︸   ︷︷   ︸
In f ection

− b exp{−nτ}x(t − τ)y(t − τ)︸                           ︷︷                           ︸
Length o f eclipse phase

,

y′(t)︸︷︷︸
In f ected cells

= b exp{−nτ}x(t − τ)y(t − τ)︸                           ︷︷                           ︸
Length o f eclipse phase

− ay(t)︸︷︷︸
Cytotoxicity

− py(t)z(t)︸   ︷︷   ︸
Immune kill

,

z′(t)︸︷︷︸
Virus−speci f ic CT L

= cy(t)z(t)︸   ︷︷   ︸
S timulation

− dz(t)︸︷︷︸
Clearance

,

(2.1)

where n is the death rate of infected tumor cells during the period of the lytic cycle. Explanations of
other parameters in Eq. (2.1) are listed in the Table 1. As I(t) is uncoupled with x(t), y(t), z(t). We just
consider the mathematical model about x(t), y(t), z(t).

Table 1. Model parameters.

PARA. MEANING UNIT VALUE REF.
r intrinsic growth rate day−1 0.206 [12]
k maximum carrying capacity mm3 2139 [12]
b virus replicating mm−3day−1 [1.2/105, 1.2/103] [24]
τ cycle time of the intracellular day several days [12, 14]
a cytotoxicity of virus day−1 [2

5 ,
2
3 ] [24]

p immune killing rate mm−3day−1 15.3 [25, 4]
c stimulation rate by virus mm−3day−1 0.048 [25, 4]
d clearance rate of immune cells day−1 1.6 [25, 4]
x uninfected tumor cells mm3

y infected tumor cells mm3

z virus-specific CTL response mm3

First, we consider equilibria with no virus-specific CTL response. There are two such equilibria:
the trivial equilibrium E0 = (0, 0, 0), and the original tumor equilibrium E1 = (k, 0, 0). We claim that
infections by viruses in tumor cell population occur if R0 > 1, where R0 is defined as

R0 =
bk exp{−nτ}

a
. (2.2)

Indeed, R0 can be calculated in the same way as the basic reproductive number in epidemiology
model [26]. See also Chapt. 8 in [27]. By the second equation of Eq. (2.1), the life time of infected
component is 1

a , and every infected tumor cell produces bx∗ exp{−nτ}
a newly infected individuals during

its life time. Note that x∗ is just the maximum carrying capacity k of tumor load. So, every infected
individual can produce R0 infective tumor cells. Thus, if R0 > 1, infected cells proliferate. Thus, virus
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therapy equilibrium Evt(xvt, yvt, zvt) exists, where

xvt =
a exp{nτ}

b
, yvt =

rk
r + bk

(1 −
1
R0

), zvt = 0.

Especially, if the cytotoxicity of virus a = 0, the virus can attain 100% prevalence in the tumor cell
population. In this case, the virus therapy equilibrium Evt is reduced to E∗ = (0, rk

r+bk , 0). If R0 = 1,
equilibrium Evt coincides with equilibrium E1.

Next, we consider virus replication in the presence of the virus-specific CTL response, i.e. z , 0.
In this case, there is another equilibrium ECT L = (xCT L, yCT L, zCT L), where

xCT L =
ckr − (r + bk)d

cr
, yCT L =

d
c
, zCT L =

bxCT L exp{−nτ} − a
p

.

Similar to the definition of R0, we can define

R1 =
crk

d(r + bk)
(1 −

1
R0

).

By simple calculations, we can verify that R1 > 1 is a sufficient and necessary condition for the
existence of positive equilibrium ECT L, see Theorem 4.4. It implies that the virus-specific CTL com-
ponent can invade the infection component. If R1 = 1, equilibria Evt and ECT L coincide. Note that if
R0 ≤ 1, then R1 ≤ 0, which implies that if the oncolytic viruses fail to spread in the tumor cell, then the
virus specific CTL response will not occur.

Our main mathematical results are listed in Table 2 and Table 3. Detailed proofs are given in Section
4.

Table 2. Main results in ODE case

Conditions Results Figure
R0 ≤ 1 original tumor load equilibrium E1 is globally stable Figure 2
R0 > 1,R1 ≤ 1 virus therapy equilibrium Evt is globally stable Figure 3
R0 > 1,R1 > 1 virus-specific CTL equilibrium ECT L is globally stable Figure 4

Table 3. Main results in DDE case

Conditions Results Figure
R0 ≤ 1 original tumor load equilibrium E1 is globally stable Figure 5
1 < R0 ≤ 3,R1 < 1 virus therapy equilibrium Evt is locally stable Figure 6
R0 > 1, a = 0 virus therapy equilibrium Evt is locally stable Figure 9
R0 > 3,R1 < 1 possible Hopf bifurcation from virus therapy equilibrium Evt Figure 7
R0 > 1,R1 > 1, small τ virus-specific CTL equilibrium ECT L is locally stable Figure 8

3. Biological results

Based on the mathematical results described above, in this section we will investigate the treatment
outcome and its dependence on system parameters. Recall our key parameters: virus infection rate b,
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cytotoxicity of the virus a, intercellular viral life-cycle length τ, immune cell stimulation rate by virus
c, and the clearance rate of immune cells d. We focus on the stability properties of the the equilibria
E1, Evt and ECT L and how much the tumor load x + y is reduced for the “treatment equilibria” Evt and
ECT L relative to that of E1 where the load is k. Mathematical analysis shows that success or failure of
the virus therapy is determined by R0 = bk exp(−nτ)/a. Virus therapy occurs only if R0 > 1 and virus
elicits an immune response only if R1 > 1 where R1 = crk

d(r+bk) (1 − R−1
0 ).

If R0 ≤ 1, infected tumor cells will go extinct before the virus has a chance to significantly spread,
see Figure 5. If 1 < R0 ≤ 3,R1 < 1, then infected tumor cells can invade the uninfected tumor but virus
CTL response is not elicited, see Figure 6. If R0 > 3,R1 < 1, sustained oscillations occur in the tumor
load, see Figure 7. However, suitable virus-specific CTL response make the periodic oscillation fade
away, see Figure 8. In particular, if R0 > 1,R1 ≤ 1, a = 0, the virus will attain the 100% prevalence
in the tumor population. In this case, the infected tumor population y = rk

r+bk , and the uninfected tumor
population x = 0, see Figure 9. Parameters in Figure 2-Figure 9 are chosen as listed in Table 4.
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Figure 2. R0 ≤ 1, τ = 0, E1 is stable and therapy fails.

Table 4. Model parameters

Figure a b c d R0 R1 τ Initial Data
Figure 2 1 0.000448 0.02 0.5 0.9583 -0.6592 0 (200,800,100)
Figure 3 0.512 0.0005 0.001 0.5 2.0889 0.3602 0 (200,800,100)
Figure 4 0.512 0.001 0.008 0.8 4.1777 1.4293 0 (200,800,100)
Figure 5 1 0.000448 0.02 0.5 0.9487 -0.8180 1 (200,500,800)
Figure 6 0.512 0.0005 0.001 0.5 2.0681 0.5793 1 (200,600,100)
Figure 7 0.512 0.001 0.001 0.5 4.1362 0.2849 1 (200,600,100)
Figure 8 0.512 0.001 0.008 0.8 4.1362 1.4247 1 (200,100,600)
Figure 9 0 0.001 0.001 0.5 +∞ 0.3758 1 (10,300,10)

k = 2139, r = 0.206 taken from [12], and assume n = 0.01, p = 0.01.
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Figure 3. R0 > 1, R1 ≤ 1, τ = 0, Evt is stable, therapy reduces tumor load with no immune
response.
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Figure 4. R0 > 1, R1 > 1, τ = 0, therapy reduces tumor load with immune response.
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Figure 5. R0 ≤ 1 τ , 0, E1 is stable and therapy fails.
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Figure 6. 1 < R0 ≤ 3,R1 ≤ 1 τ , 0, Evt is stable, therapy reduces tumor load with no
immune response.
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Figure 7. τ , 0, a , 0, R0 > 3,R1 ≤ 1, oscillatory population with no immune response.
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Figure 8. R0 > 3,R1 > 1, oscillatory behavior of tumor population fades away and immune
response is mounted.
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Figure 9. a = 0, R0 > 1, virus attains 100% prevalence in tumor population.

3.1. Virus therapy

In what follows, we are interested in the total tumor load x + y. In the simplest case, R0 ≤ 1, the
original tumor equilibrium E1 = (k, 0, 0) is globally stable. In this case, total tumor load is equal to
x1 + y1 = k. This is the original total tumor load. Next we focus on virus therapy equilibrium Evt. It is
easy to see that Evt exists if and only if R0 > 1, i.e.

b >
a exp{nτ}

k
, or a < bk exp{−nτ}, or τ <

1
n

ln
bk
a
. (3.1)

By inequality (3.1), we see that in order to make the viral therapy work, one needs to engineer the
oncolytic virus with suitable properties. Among these are weaker cytotoxicity a, faster viral replication
rate b, and/or shorter period of intracellular cycle τ. By the definition of R0, one finds

xvt =
a exp{nτ}

b
=

k
R0
, yvt =

rbk − ar exp{nτ}
b(r + bk)

=
kr(1 − R−1

0 )
r + bk

.

xvt + yvt = k
r + a exp{nτ}

r + bk
= k

r + a exp{nτ}
r + R0a exp{nτ}

. (3.2)

It is obvious that xvt + yvt < k when R0 > 1, where k is the original total tumor load. Besides,
uninfected tumor cells xvt will be decreasing under the conditions of weaker cytotoxicity a, faster viral
replicating rate b, or shorter period of intracellular cycle τ. Intuitively, these condition will benefit
the infected tumor cells yvt, conforming to biological intuition. The short period of intracellular cycle
means the high effect of transformation from the uninfected tumor cells to infected tumor cells. And
the weak cytotoxicity reduces the death rate of infected tumor cells. All of these conditions will benefit
the growth of infected tumor cells, which leads to increased contact probability between infected tumor
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Figure 10. Weak cytotoxicity (small a) is better than strong cytotoxicity. Tumor load xvt +

yvt → 0 as b→ ∞.

cells and uninfected tumor cells, and thus decreasing the uninfected tumor population. If the cytotoxi-
city of virus a = 0, then the infected tumor cells may invade the uninfected tumor cells completely, i.e.
x = 0.

Now we consider the total tumor load xvt + yvt in different situations.
Case 1. When the period of intracellular cycle τ = 0 and R0 > 1, then the viral therapy equilibrium

is stable. In this case, the total tumor load xvt + yvt = kr+ak
r+bk . Both weak cytotoxicity and fast viral

replication lead to reduced total tumor load. When the viral replication rate b is fixed, the optimal
cytotoxicity rate is a = 0, and the total tumor load is kr

r+bk . If a is fixed, then the total tumor load tends
to 0 as b tends to infinity, see Figure 10.

Case 2. When viral cytotoxicity is a = 0 and R0 > 1, the 100%-virus prevalence equilibrium E∗ is
stable. In this case, the uninfected tumor cell density is zero and the total tumor load is kr

r+bk , see Figure
9. Hence, increasing viral replication rate b will reduce the total tumor load.

Case 3. If τ , 0, a , 0 and 1 < R0 ≤ 3, then the viral therapy equilibrium is stable, see Figure 6.
Recall that the total tumor load is given by

xvt + yvt = k
r + a exp{nτ}

r + bk
.

When xvt + yvt is considered as a function of R0 and b, it can be rewritten as

xvt + yvt = k
rR0 + bk

rR0 + bkR0
.

This is decreasing function of R0. Thus, minR0∈(1,3] xvt + yvt = k 3r+bk
3r+3bk . And k 3r+bk

3r+3bk is also a decreasing
function of b. Thus, the minimal total tumor load is k

3 as R0 = 3 and b tends to∞.
Case 4. When the period of intracellular cycle τ , 0, viral cytotoxicity a , 0, and R0 > 3,

infected tumor load and uninfected tumor load oscillate about a positive mean value, see Figure 7.
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In fact, a Hopf Bifurcation may occur from the viral therapy equilibrium (xvt, yvt, 0). By Eq. (3.2),
rapid replication b, weak cytotoxicity of virus a and short cycle time of the intracellular τ facilitate
tumor remission, if amplitude of this periodic solution is small. Large amplitude oscillations may be
dangerous since it may mislead patients to stop further therapy when the total load is of very low.
However, suitable virus-specific CTL response will make this phenomenon fade away, see Figure 8.
Furthermore, we conjecture that the combination of viral therapy with immunotherapy should be an
effective strategy for tumor remission.

3.2. Virus-specific CTL response

When R0 > 1 and R1 = crk
d(r+bk) (1 −

1
R0

) > 1, virus specific CTL response occurs. In this case,
uninfected tumor population density is given by

xCT L = k(1 −
r + bk

rk
d
c

) = k
R1 − 1 + 1

R0

R1
,

and infected tumor population density is yCT L = d
c so total tumor load equals

xCT L + yCT L = k(1 −
b
r

d
c

).

Here, c
d can be viewed as an index representing the strength of virus-specific immune response.

Larger c
d corresponds to stronger virus-specific immune response and note that R1 > 1 implies a lower

bound for it. Consequently, if virus CTL response is strong, the uninfected tumor population xCT L ≈ k,
infected tumor cells yCT L ≈ 0 and total tumor population xCT L+yCT L ≈ k. This implies that the oncolytic
virotherapy fails due to the interference by the immune system as reported in [22]. On the other hand,
by the definition of R1, c

d >
r+bk

rk (1 − 1
R0

)−1 > b
r holds. Therefore, when c

d tends to r+bk
rk (1 − 1

R0
)−1, total

tumor load will tend to its minimum value k(r+a exp{nτ})
r+aR0 exp{nτ} , see Figure 11.

As references [1, 22, 23] showed that immune suppressive drug can decrease the virus-specific
CTL response. We assume c

d can be decreased by using immune suppressive drugs. In [23], the
authors used the percentage of viable (uninfected) cells, given by xCT L

xCT L+yCT L
to quantify the oncolytic

effect of virotherapy. By the expressions for xCT L and yCT L, we see that yCT L will be increasing and
xCT L be decreasing on using immune suppressive drugs (decreasing c

d ), which leads to a decrease of the
percentage of uninfected cells, see Figure 12. Thus, our model corroborates the experimental results
obtained in [23].

4. Mathematical proofs

In this section, we give detailed proofs of our mathematical results listed in Table 2 and Table 3.
Due to the biological background, we study Eq. (2.1) with nonnegative initial conditions
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x′ = rx(t)(1 − x(t)+y(t)
k ) − bx(t)y(t),

y′ = b exp{−nτ}x(t − τ)y(t − τ) − ay(t) − py(t)z(t),

z′ = cy(t)z(t) − dz(t),

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), z(θ) = ϕ3(θ),

where ϕi(θ) ≥ 0, ϕi(0) > 0 for θ ∈ [−τ, 0], i = 1, 2, 3.
Let C = C([−τ, 0],R3) be the Banach space of continuous mappings from [−τ, 0] into R3 with norm

‖ψ‖ = sup
−τ≤θ≤0

|ψ(θ)|,∀ψ ∈ C.

We denote
C+ = {(ϕ1, ϕ2, ϕ3) ∈ C|ϕi(0) > 0, ϕi(θ) ≥ 0, i = 1, 2, 3, θ ∈ [−τ, 0]}.

As usual, for any continuous function x ∈ C([−τ,+∞),R) and any given t ≥ 0, xt ∈ C([−τ, 0],R) is
defined as xt(θ) = x(t + θ), for any θ ∈ [−τ, 0].

Theorem 4.1. For any (ϕ1(θ), ϕ2(θ), ϕ3(θ)) ∈ C+, there exists unique solution to Eq. (2.1) which is
nonnegative. Moreover, there exist positive constants M1,M2,M3 independent of initial data, such that
x(t) ≤ M1, y(t) ≤ M2, z(t) ≤ M3 for sufficiently large t.

Proof. By Theorem 3.4 in [27], the first part of Theorem 4.1 holds. By the first equation of Eq. (2.1),

x′ = rx(1 −
x + y

k
) − bxy ≤ rx(1 −

x
k

).

So
lim

t→+∞
x(t) ≤ k.

For any fixed ε > 0, let M1 = k + ε, then x(t) ≤ M1 for sufficiently large t.
Let u(t) = b exp{−nτ}x(t) + (b + r

k )y(t + τ), then

u′(t) = br exp{−nτ}x(t)(1 −
x(t)
k

) − a(b +
r
k

)y(t + τ) − p(b +
r
k

)y(t + τ)z(t + τ)

≤
brk exp{−nτ}

4
− a(b +

r
k

)y(t + τ)

≤
brk exp{−nτ}

4
− au(t)

Thus, b exp{−nτ}x(t) + (b + r
k )y(t + τ) ≤ br exp{−nτ} brk exp{−nτ}

4a . By x(t), y(t) ≥ 0, there exists a positive
constant M2 > 0 such that y(t) ≤ M2 for sufficiently large t. Similarly, consider v(t) = y(t) +

p
c z(t), we

can find that v is bounded. Therefore, there is a constant M3 such that z(t) ≤ M3 for t large enough. �

Now we consider the linearization of the Eq. (2.1) at equilibrium (x∗, y∗, z∗) as follows.

X′(t) = AX(t) + BX(t − τ) (4.1)
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where X(t) = (x(t), y(t), z(t))T ,

A(x∗, y∗, z∗) =


r(1 − x∗+y∗

k ) − by∗ − rx∗
k −

rx∗
k − bx∗ 0

0 −a − pz∗ −py∗
0 cz∗ cy∗ − d


B(x∗, y∗, z∗) =


0 0 0

b exp{−nτ}y∗ b exp{−nτ}x∗ 0
0 0 0


The characteristic equation of Eq. (4.1) is formulated as∣∣∣∣∣∣∣∣∣∣

λ − r(1 − x∗+y∗
k ) + by∗ + rx∗

k
rx∗
k + bx∗ 0

− exp{−λτ}b exp{−nτ}y∗ λ − b exp{−nτ}x∗ exp{−λτ} + a + pz∗ py∗
0 −cz∗ λ − cy∗ + d

∣∣∣∣∣∣∣∣∣∣ = 0. (4.2)

Theorem 4.2. Trivial equilibrium E0 = (0, 0, 0) is always unstable and equilibrium E1 = (k, 0, 0) is
asymptotically stable when R0 < 1.

Proof. Let x∗ = y∗ = z∗ = 0 in Eq. (4.2). We have λ1 = r, λ2 = −a, λ3 = −d. So trivial equilibrium
E0 = (0, 0, 0) is always unstable.

Let x∗ = k, y∗ = z∗ = 0 in Eq. (4.2). Then∣∣∣∣∣∣∣∣∣
λ + r r + bk 0

0 λ − bk exp{−(n + λ)τ} + a 0
0 0 λ + d

∣∣∣∣∣∣∣∣∣ = 0.

It is clear that λ1 = −r, λ2 = −d. The roots of equation

λ = bk exp{−nτ} exp{−λτ} − a

dominate the stability of E1. As R0 < 1, it is easy to check that bk exp{−nτ} − a < 0 and b exp{−nτ}k >
−a. By Theorem 4.7(b) in [27], the original tumor load equilibrium E1 = (k, 0, 0) is asymptotically
stable. �

Theorem 4.3. If R0 > 1 and R1 < 1, then equilibrium Evt is locally stable when τ = 0. If τ > 0 and
if either 1 < R0 ≤ 3 or a = 0, then virus therapy equilibrium Evt is also locally stable. When R0 > 3,
equilibrium Evt undergoes a Hopf bifurcation at a critical value of the delay τ.

Proof. By substituting Evt in characteristic Eq. (4.2), we have∣∣∣∣∣∣∣∣∣
λ + rxvt

k
rxvt

k + bxvt 0
− exp{−λτ}b exp{−nτ}yvt λ − b exp{−nτ}xvt exp{−λτ} + a pyvt

0 0 λ − cyvt + d

∣∣∣∣∣∣∣∣∣ = 0.

It is easy to check that λ = cyvt − d < 0 due to R1 < 1. Thus the roots of the following equation

λ2 + a1(λ)λ + a2(λ) = 0 (4.3)
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determine the stability of equilibrium Evt, where

a1(λ) =
rxvt

k
+ a − a exp{−λτ},

a2(λ) = b exp{−nτ}xvtyvt exp{−λτ}(
r
k

+ b) + (a − b exp{−nτ}xvt exp{−λτ})
rxvt

k
= ayvt exp{−λτ}(

r
k

+ b) + (a − a exp{−λτ})
rxvt

k
.

Consequently, a1, a2 > 0 as τ = 0 which implies that the characteristic Eq. (4.2) has no solution with
positive real part.

For τ > 0, we rewrite Eq. (4.3) as below.

λ2 + A1λ + B1 − (C1λ + D1) exp{−λτ} = 0, (4.4)

where
A1 = rxvt

k + a, B1 = arxvt
k ,

C1 = a, D1 = − r+kb
k ayvt + arxvt

k .

Suppose that there exists a τ0 > 0 such that Eq. (4.4) has a pair of pure imaginary roots ±iω,ω > 0.
Then ω satisfies

−ω2 + A1ωi + B1 − (C1ωi + D1)(cosωτ0 − i sinωτ0) = 0

Separating the real and imaginary parts, we have

− ω2 + B1 = D1 cosωτ0 + C1ω sinωτ0, (4.5)

A1ω = C1ω cosωτ0 − D1 sinωτ0. (4.6)

Then we have
ω4 + (A2

1 − 2B1 −C2
1)ω2 + B2

1 − D2
1 = 0. (4.7)

By direct calculation, we have
A2

1 − 2B1 −C2
1 = (

rxvt

k
)2 > 0, (4.8)

B2
1 − D2

1 =
(r + bk)ayvt

k
(
2raxvt

k
−

(r + bk)ayvt

k
). (4.9)

Substituting xvt and yvt into formula (4.9), then

B2
1 − D2

1 = a2r2(1 −
1
R0

)(
3
R0
− 1).

Therefore, if 1 < R0 ≤ 3 or a = 0, there is no positive positive solutions to the Eq. (4.7). Thus, the
solutions of Eq. (4.4) always have negative real parts, which implies that Evt is asymptotically stable.

Otherwise, if R0 > 3, then there exists some ω2 > 0 satisfying Eq. (4.7). In this case, by Eq. (4.5)
and Eq. (4.6), we have

τk =
1
ω
{arccos(

(C1A1 − D1)ω2 + B1D1

C2
1ω

2 + D2
1

) + 2kπ},

where k = 1, 2, 3, · · · .
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Suppose that λ(τ) = σ(τ) + iω(τ) is a root of Eq. (4.7) with τ > τ0. Differentiating Eq. (4.4) with
respect to τ, we obtain

λ′ =
(C1λ + D1)λ exp{−λτ}

C1 exp{−λτ} − 2λ − A1 − τ(C1λ + D1) exp{−λτ}
. (4.10)

So we have

sign<{
dτ
dλ
}|τ=τ0 = sign<{

C1 exp{−λτ} − 2λ − A1 − τ(C1λ + D1) exp{−λτ}
(C1λ + D1)λ exp{−λτ}

}|τ=τ0

= sign<{
C1 exp{−λτ} − 2λ − A1

(C1λ + D1)λ exp{−λτ}
−
τ

iω
}|τ=τ0

= sign<{−
(C1 − 2λ exp{λτ} − A1 exp{λτ})(D1i + C1ω)

(D2
1 + C2

1ω
2)ω

}|τ=τ0

= sign<{−(C1 − 2ω cosωτ0i + 2ω sinωτ0 − A1 cosωτ0 − A1i sinωτ0)
(D1i + C1ω)}|τ=τ0

= sign<{ω(2ω2 + A2
1 − 2B1 −C2

1}|τ=τ0

By formula (4.8), we have sign< dτ
dλ |τ=τ0 > 0, where < dτ

dλ |τ=τ0 means the real part of dτ
dλ |τ=τ0 . By Hopf

bifurcation theorem (Theorem 6.1 in Chapter 6 of [27]), conclusions in Theorem 4.3 hold. �

Theorem 4.4. If R0 > 1 and R1 > 1, then the CTL equilibrium ECT L exists and is stable for small
values of the delay τ.

Proof. In order to find the CTL equilibrium, we consider algebraic system
rx(1 − x+y

k ) − bxy = 0,
b exp{−nτ}xy − ay − pyz = 0,
cyz − dz = 0.

(4.11)

Assuming zCT L , 0, we get yCT L = d
c from the third equation of equation (4.11). Substituting yCT L

into the first equation of system (4.11), we get xCT L =
ckr−(r+bk)d

cr . By the second equation of system
(4.11), we get zCT L =

bxCT L exp{−nτ}−a
p . In order to find positive solutions, we assume xCT L, yCT L, zCT L > 0.

Obviously, yCT L = d
c > 0. It is easy to see that zCT L =

bxCT L exp{−nτ}−a
p > 0 can lead to xCT L > 0. Assume

zCT L > 0, we have

zCT L =
bxCT L exp{−nτ} − a

p
> 0⇔ b[k −

(r + bk)d
cr

] − a exp{nτ} > 0

⇔ 1 −
a exp{nτ}

bk
−

d(r + bk)
crk

> 0⇔ 1 −
1
R0

>
d(r + bk)

crk

⇔
crk

d(r + bk)
(1 −

1
R0

) > 1⇔ R1 > 1.

Substituting ECT L into determinant (4.2) and by direct calculation, we get

λ3 + b1(λ)λ2 + b2(λ)λ + b3(λ) = 0. (4.12)
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b1(λ) = bxCT L exp{−nτ}(1 − exp{−λτ}) +
rxCT L

k
,

b2(λ) = dpzCT L +
rbx2

CT L

k
exp{−nτ}(1 − exp{−λτ})

+
r + bk

k
bxCT LyCT L exp{−nτ} exp{−λτ},

b3(λ) =
rpdxCT LzCT L

k
.

It is easy to see that if τ = 0, then b1, b2, b3 > 0 and b1b2 > b3. Thus, by Hurwitz criterion, Eq. (4.12)
has no solution with positive real part. Because solutions of Eq. (4.12) depend continuously on its
parameters, there is no root with positive real part of Eq. (4.12) for sufficiently small τ. �

Theorem 4.5. If R0 < 1, then the original tumor load equilibrium E1 is globally stable in the first
quadrant for every τ ≥ 0.

Proof. Let

V1(ϕ1, ϕ2, ϕ3) = V11(ϕ1, ϕ2, ϕ3) + V12(ϕ1, ϕ2, ϕ3) + V13(ϕ1, ϕ2, ϕ3) + V14(ϕ1, ϕ2, ϕ3)

where V11(ϕ1, ϕ2, ϕ3) = ϕ1(0) − k − k ln ϕ1(0)
k , V12(ϕ1, ϕ2, ϕ3) = Lϕ2(0), V13(ϕ1, ϕ2, ϕ3) =

pL
c ϕ3(0),

V14(ϕ1, ϕ2, ϕ3) = r+bk
k

∫ 0

−τ
ϕ1(θ)ϕ2(θ)dθ and L = r+bk

bk exp{−nτ} . Then,

V1(xt, yt, zt) = x(t) − k − k ln
x(t)
k

+ Ly(t) +
pL
c

z(t) +
r + bk

k

∫ t

t−τ
x(θ)y(θ)dθ.

Clearly, V1 is always positive except for x = k, y = 0, z = 0.
Differentiating V1 with time t along Eq. (2.1), we get

V ′11(xt, yt, zt)|(2.1) = [1 −
k

x(t)
]x′(t) = [x(t) − k][r(1 −

x(t) + y(t)
k

) − by(t)]

=
1
k

(x(t) − k)[r(k − x(t)) − ry(t) − bky(t)] = −
r
k

(x(t) − k)2 −
r + bk

k
x(t)y(t) + (r + bk)y(t),

V ′14(xt, yt, zt) =
r + bk

k
[x(t)y(t) − x(t − τ)y(t − τ)],

V ′12(xt, yt, zt)|(2.1) = Ly′(t) = L[b exp{−nτ}x(t − τ)y(t − τ) − ay(t) − py(t)z(t)]

=
r + bk

k
x(t − τ)y(t − τ) − aLy(t) − pLy(t)z(t),

V ′13(xt, yt, zt)|(2.1) =
pL
c

z′(t) =
pL
c

[cy(t)z(t) − dz(t)] = pLy(t)z(t) −
pdL

c
z(t).

Then
V ′1(xt, yt, zt)|(2.1) = −

r
k

(x(t) − k)2 + (r + bk)(1 −
1
R0

)y(t) −
pdL

c
z(t).

As R0 < 1, we have V ′1(xt, yt, zt) ≤ 0. If V ′1(xt, yt, zt) = 0, then x = k, y = 0, z = 0. Hence, by LaSalle’s
invariance principle, E1 is globally stable. �
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Theorem 4.6. If R0 > 1,R1 < 1, τ = 0, then equilibrium Evt is globally stable in the first quadrant.

Proof. Let

V2(x, y, z) =
kbc

r + bk
V21(x, y, z) + cV22(x, y, z) + pV23(x, y, z),

where,

V21(x, y, z) = x − xvt − xvt ln
x

xvt
,V22(x, y, z) = y − yvt − yvt ln

y
yvt
,V23(x, y, z) = z.

Differentiating V2i, i = 1, 2, 3 along Eq. (2.1),

V ′21(x, y, z) = (1 −
xvt

x
)x′(t)

= (1 −
xvt

x
)[rx(1 −

x + y
k

) − bxy] = (x − xvt)[r(1 −
x + y

k
) − by]

= −(x − xvt)[
r
k

(x − xvt) + (
r
k

+ b)(y − yvt)]

= −
r
k

(x − xvt)2 − (
r
k

+ b)(x − xvt)(y − yvt),

V ′22(x, y, z) = (1 −
yvt

y
)(bxy − ay − pyz) = (y − yvt)(bx − a − pz)

= (y − yvt)[b(x − xvt) − pz] = b(x − xvt)(y − yvt) − p(y − yvt)z,

V ′23(x, y, z) = cyz − dz = c(y − yvt)z + cyvtz − dz.

Thus, we have that

V ′2(x, y, z) = −
rbc

r + bk
(x − xvt)2 + p(cyvt − d)z.

Since R1 = c
d yvt < 1, V ′2(x, y, z) ≤ 0 and V ′2(x, y, z) = 0 if and only if x = xvt, z = 0. Set

D00 = {(x(t), y(t), z(t))|
dV2

dt
= 0}.

By Lemma A.16 in [28], we obtain dx
dt = 0 which leads to y = yvt. Thus, the largest invariant set of

(2.1) contained in D00 is Evt. By LaSalle’s invariance principle, Evt is globally stable. �

Theorem 4.7. If R0 > 1,R1 > 1, τ = 0, then the CTL equilibrium ECT L is globally stable in the first
quadrant.

Proof. Let

V3(x, y, z) =
kbc

r + bk
V31(x, y, z) + cV32(x, y, z) + pV33(x, y, z),

where,

V31(x, y, z) = x − xCT L − xCT L ln
x

xCT L
,

V32(x, y, z) = y − yCT L − yCT L ln
y

yCT L
,
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V33(x, y, z) = z − zCT L − zCT L ln
z

zCT L
.

By similar calculations, we have

V ′31(x, y, z) = (1 −
xCT L

x
)x′(t)

= (1 −
xCT L

x
)[rx(1 −

x + y
k

) − bxy] = (x − xCT L)[r(1 −
x + y

k
) − by]

= −(x − xCT L)[
r
k

(x − xCT L) + (
r
k

+ b)(y − yCT L)]

= −
r
k

(x − xCT L)2 − (
r
k

+ b)(x − xCT L)(y − yCT L),

V ′32(x, y, z) = (1 −
yCT L

y
)(bxy − ay − pyz) = (y − yCT L)(bx − a − pz)

= (y − yCT L)[b(x − xCT L) − p(z − zCT L)]
= b(x − xCT L)(y − yCT L) − p(y − yCT L)(z − zCT L),

V ′33(x, y, z) = (1 −
zCT L

z
)(cyz − dz) = (z − zCT L)(cy − d) = c(z − zCT L)(y − yCT L).

Consequently,

V ′3(x, y, z) = −
rbc

r + bk
(x − xvt)2 ≤ 0,

and V ′3(x, y, z) = 0 if and only if x = xCT L. Set

D01 = {(x(t), y(t), z(t))|
dV3

dt
= 0}.

By Lemma A.16 in [28], we can see dx
dt = 0 which leads to y = yCT L. Using the same method in

the second equation of Eq. (2.1), we further obtain z = zCT L. Thus, the largest invariant set of (2.1)
contained in D01 is ECT L. Conclusions of Theorem 4.7 follows from LaSalle’s invariance principle. �

5. Discussion and conclusion

Since oncolytic virotherapy has significant potential benefits in the fight against cancer, there has
been much interest in constructing and analyzing mathematical models of the effects of virotherapy.
To the best of our knowledge, Wodarz was the first to model oncolytic virotherapy using a simple
ODE system and the first PDE model was considered by Wu [29]. Neither of these authors included
an intracellular viral life-cycle delay in their models. The first to do so was the paper of Wang [14],
although their model did not include an immune response. Thus, we formulate, to the best of our
knowledge, the first time, an oncolytic virotherapy model with both virus-specific CTL response and
viral life-cycle delay.

Our results provide new insight into how to engineer an effective oncolytic virus. Furthermore, we
show that immune suppressive drugs can enhance the oncolytic effect (i.e. the percentage of viable
tumor cells x

x+y will decrease) which coincides with the experimental results in [23].
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Table 5. Optimal choice depends on R0,R1

Condition Total Tumor Size Optimal Choice
τ=0, R0 > 1,
R1 < 1

k r+a
r+bk Weak cytotoxicity a and fast

viral replication b
τ , 0, a = 0,
R0 > 1, R1 < 1

k r
r+bk Fast viral replication b

τ , 0, a , 0, 3 ≥
R0 > 1, R1 < 1

k rR0+bk
rR0+bkR0

Fast viral replication b, and
R0 = 3 (i.e bk = 3a exp{nτ})

τ , 0, a , 0,
R0 > 3, R1 < 1

Hopf bifurcation at (xvt, yvt, 0)
for suitable delay τ

See Section 3, Case 4

τ , 0, R0 > 1,
R1 > 1

k(1 − b
r

d
c ) Weak virus-specific immune response

We choose several strategies to reduce the total tumor load in different situations, see Table 5. In
addition, we also verify that immune suppressive drugs can enhance the oncolytic effect of virus.

The most favorable result would be that the oncolytic virus should be designed to have low toxicity,
short viral life-cycle, fast replication, and virus-specific immune avoidance.

Generally, R0 will determine the total tumor load as τ , 0, a , 0,R1 < 1. When R0 ∈ (1, 3], the
optimal choice of parameters satisfies bk = 3a exp{nτ} and b is big enough as lim

b→∞
x + y = k

3 . Thus,

virus should be designed: rapid replication rate b and cytotoxicity a should be close to number bk
3 exp{nτ} .

On the other hand, if R0 ∈ (3,+∞), the tumor load changes periodically. When the amplitude of this
periodic solution is small, virus needs to be designed as rapid replication, weak cytotoxicity of virus,
and short intracellular viral life-cycle. Otherwise, suitable virus-specific immune responses can reduce
the periodic oscillations ultimately causing the tumor load to tend to a constant, see Figure 13.
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Figure 13. Suitable virus-specific immune response can reduce the periodic phenomenon.

It is worth mentioning that dosage of medication is not considered in the present paper, one can find
the successful therapy treatment in our recent papers [30, 31] where the optimal dosage of medication
is given and the total tumor load tends to 0 under suitable conditions.

In this paper, we focus on how to design a more effective virus to be used in oncolytic virotherapy.
Original tumor load equilibrium E1 is globally stable as R0 ≤ 1. Virus therapy equilibrium Evt is stable
as R0 > 1, R1 ≤ 1, τ = 0 or R0 ∈ (1, 3], R1 ≤ 1 τ , 0. Besides, virus therapy equilibrium can undergo
a Hopf bifurcation such that the cell and virus populations oscillate in time as R0 > 3, R1 ≤ 1, τ , 0.
Lastly, virus-specific CTL equilibrium ECT L is stable for small τ, R0 > 1 and R1 > 1.
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13. D. Dingli, M. D. Cascino, K. Josić, et al., Mathematical modeling of cancer radiovirotherapy,
Math. Biosci., 199 (2006), 55–78.

14. Y. Wang, J. P. Tian and J. Wei, Lytic cycle: A defining process in oncolytic virotherapy, Appl.
Math. Model., 37 (2013), 5962–5978.

15. E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with
delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165.

16. B. R. Dix, S. J. O’Carroll, J. Colleen, et al., Efficient induction of cell death by adenoviruses
requires binding of E1B55k and p53, Cancer Res., 60 (2000), 2666–2672.

17. A. R. Hall, B. R. Dix, S. J. O’Carroll, et al., p53-dependent cell death/apoptosis is required for a
productive adenovirus infection, Nat. Med., 4 (1998), 1068–1072.

18. J. N. Harada and A. J. Berk, p53-Independent and -Dependent Requirements for E1B-55K in
Adenovirus Type 5 Replication, J. Virol., 4 (1999), 5333–5344.

19. M. Ramachandra, A. Rahman, A. Zou, et al., Re-engineering adenovirus regulatory pathways to
enhance oncolytic specificity and efficacy, Nat. Biotechnol., 19 (2001), 1035–1041.

20. G. Gonzalez-Parra, H. M. Dobrovolny, D. F. Aranda, et al., Quantifying rotavirus kinetics in the
REH tumor cell line using in vitro data, Virus Res., 244 (2018), 53–63.

21. J. A. Borghans, R. J. de Boer and L. A. Segel, Extending the quasi-steady state approximation by
changing variables, Bull. Math. Biol., 58 (1996), 43–63.

22. A. Friedman, J. P. Tian, G. Fulci, et al., Glioma virotherapy: Effects of innate immune suppression
and increased viral replication capacity, Cancer Res., 66 (2006), 2314–2319.

23. K. Li, J. Liang, Y. Lin, et al., A classical PKA inhibitor increases the oncolytic effect of M1 virus
via activation of exchange protein directly activated by cAMP 1, Oncotarget, 7 (2016), 48443–
48455.

24. V. L. de Rioja, N. Isern and J. Fort, A mathematical approach to virus therapy of glioblastomas,
Biol. Direct, 11 (2016), 1.

25. J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a
replication-competent virus and an immune response, Bull. Math. Biol., 66 (2004), 605–625.

26. H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653.

27. H. L. Smith, An introduction to delay differential equations with applications to the life sciences,
Texts in Applied Mathematics.

28. H. L. Smith and H. R. Thieme, Dynamical systems and population persistence, American Mathe-
matical Soc., 118 (2011).

29. J. T. Wu, H. M. Byrne, D. H. Kirn, et al., Modeling and analysis of a virus that replicates selectively
in tumor cells, Bull. Math. Biol., 63 (2001), 731–768.

30. Z. Wang, Z. Guo and H. Peng, A mathematical model verifying potent oncolytic efficacy of M1
virus, Math. Biosci., 63 (2001), 731–768.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1836–1860.



1860

31. Z. Wang, Z. Guo and H. Peng, Dynamical behavior of a new oncolytic virotherapy model based
on gene variation, Discrete Cont. Dyn. S., 10 (2017), 1079–1093.

c© 2019 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1836–1860.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Materials and method
	Biological results
	Virus therapy
	Virus-specific CTL response

	Mathematical proofs
	Discussion and conclusion

