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Abstract: This paper is devoted to exploring a diffusive predator-prey system with prey refuge and
predator cannibalism. We investigate dynamics of this system, including dissipation and persistence,
local and global stability of constant steady states, Turing instability, and nonexistence and existence of
nonconstant steady state solutions. The influence of prey refuge and predator cannibalism on predator
and prey biomass density is also considered by using a systematic sensitivity analysis. Our studies
suggest that appropriate predator cannibalism has a positive effect on predator biomass density, and
then high predator cannibalism may stabilize the predator-prey ecosystem and prevent the paradox of
enrichment.
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1. Introduction

Predator-prey systems as one of the most important relationships between two populations have
attracted the widespread attention and been extensively studied in both ecology and mathematical
ecology. Based on ODE systems and PDE systems, various mathematical models have been built to
understand and investigate predator-prey interaction. We refer the reader to the references [1–7] and
references therein.

Cannibalism, defined more specifically as the killing and at least partial consumption of
conspecifics, is widespread in nature [8, 9]. It has been observed that cannibalism exists in different
types of animals, such as, insects, fishes, zooplankton, isopods and amphibians. For example, in
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aquatic ecosystems, Shevtsova et. al. [11] have showed that adult Dreissena can feed on many small
zooplankton species including rotifers, polyarthra vulgaris, protozoans, and cyclopoid copepopids.
Chakraborty and Chattopadhyay [12] pointed out that the phenomenon of sexual cannibalism is very
common in many families of spiders and scorpions. For more examples of cannibalism, please see
references [13, 14]. Cannibalism leads to a trophic structure and feedback loops within a population,
and then it has a strong impact on population structure and dynamics. It is well explored in
mathematical literatures that cannibalism can have either a stabilizing or a destabilizing effect on
predator-prey systems [10, 12, 15–19].

In order to preserve biodiversity and avoid species extinction, an effective strategy is to establish a
refuge or a protection zone. In predator-prey interactions, prey species can exhibit spatial refugia
which afford the prey some degree of protection from predation [20]. For example, Huffaker and
Kennett [21] showed that cyclamen mites can use strawberry plants as physical barriers to avoid
predation by Typhlodromus mites. Previous studies have shown that refugia have a stabilizing effect
on prey-predator systems with different functional responses [22–25]. In the case of spatial
distribution patterns and dispersal mechanisms, Du and Shi first in [26] investigated dynamics of a
reaction-diffusion predator-prey system with a protection zone for the prey. In [27–33], authors also
studied the effect of a prey refuge or a protection zone in the diffusive predator-prey system.

Motivated by the existing studies and the above considerations, in this study, we consider the
following diffusive predator-prey system with prey refuge and predator cannibalism

∂u
∂t
− du4u = ru

(
1 −

u
K

)
−

a(1 − c)uv
h + (1 − c)u + ηv

, x ∈ Ω, t > 0,

∂v
∂t
− dv4v =

e1a(1 − c)uv − aη(1 − e2)v2

h + (1 − c)u + ηv
− mv, x ∈ Ω, t > 0,

∂u
∂n

= 0,
∂v
∂n

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥. 0, v(x, 0) = v0(x) ≥. 0, x ∈ Ω.

(1.1)

Here Ω is a bounded domain in Rn(n ≥ 1) with smooth boundary ∂Ω and c, e1, e2 ∈ [0, 1). All the
variables and parameters of system (1.1) and their biological significance are listed in Table 1. When
the spatial distribution is homogeneous and du = dv = c = 0, system (1.1) reduces to an ODE system

du
dt

= ru
(
1 −

u
K

)
−

auv
h + u + ηv

,

dv
dt

=
e1auv − aη(1 − e2)v2

h + u + ηv
− mv.

(1.2)

In [18], Kohlmeier and Ebenhöh established the existence and stability of steady states of (1.2) and
proved that cannibalism can have a stabilizing effect. Chakraborty and Chattopadhyay [12] showed that
the paradox of enrichment does not hold for a higher cannibalism rate among predators for system (1.2).
In [34], Prasad and Prasad gave the existence and stability of equilibria and analysed the existence of
bifurcations for system (1.2) with provision of additional food.

There is increasing recognition that the understanding of patterns and mechanisms of spatial
dispersal is a significant issue in the study of predator-prey system. Spatial heterogeneity can make
predator-prey system exhibit more complex dynamic properties. Considering the effect of spatial
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Table 1. Variables and parameters of system (1.1) with biological meanings.

Symbol Meaning Symbol Meaning
u Density of prey v Density of predator
du, dv Diffusion coefficients of prey and

predator, respectively
r Maximum growth rate of prey

K Carrying capacity of prey a Maximum consumption rate
h Half saturation concentration of

prey for v functional response
m Loss rate of predator

c Constant ratio of prey using refuge η Preference factor for feeding
of the predator on conspecifics
(cannibalism rate)

e1 Conversion rates of converting
ingested prey biomass into
predator biomasses

e2 Conversion rates of converting
ingested predator biomass into
predator biomasses

diffusion coefficient on the dynamical properties of system (1.1) is the first research topic in the
present paper. In view of the widespread existence of cannibalism, it is an interesting problem is to
explore how cannibalism affects predator-prey systems. In addition, from the perspective of
protecting biodiversity, we also discuss the effects of prey refuge.

The rest of the paper is organized as follows. In Section 2, we establish the global existence,
dissipation and persistence of positive solutions of system (1.1). In Sections 3 and 4, we investigate the
local and global stability of constant steady states, Turing instability, and nonexistence and existence
of nonconstant steady state solutions. In Section 5, we consider the influence of prey refuge and
predator cannibalism on predator and prey biomass density by using a systematic sensitivity analysis.
In the discussion section, we summary our findings and state some biologically motivated mathematical
questions for future study. Throughout this paper, numerical simulations under reasonable parameter
values from literatures are presented to illustrate or complement our mathematical findings.

2. Global existence, dissipation and persistence

This section is devoted to investigating global existence, dissipation and persistence of positive
solutions of system (1.1).

Theorem 2.1. System (1.1) has a unique global solution (u(x, t), v(x, t)) such that u(x, t) > 0 and
v(x, t) > 0 for (x, t) ∈ Ω̄ × (0,∞).

Proof. It is clear that (1.1) is a mixed quasi-monotone system for the domain {u ≥ 0, v ≥ 0}. Let
(u(x, t), v(x, t)) = (0, 0) and (ū(x, t), v̄(x, t)) = (ū(t), v̄(t)), where (ū(t), v̄(t)) satisfies

du
dt

= ru
(
1 −

u
K

)
,

dv
dt

=
e1auv + aη(e2 − 1)v2

h + (1 − c)u + ηv
− mv,

ū(0) = ū0 = max
x∈Ω̄

u0(x) > 0, v̄(0) = v̄0 = max
x∈Ω̄

v0(x) > 0.
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It follows from the existence and uniqueness theorem of solutions of ordinary differential equations
that (ū(t), v̄(t)) is global existence and ū(t) > 0, v̄(t) > 0 for t ≥ 0. Note that

∂u
∂t
− du4u ≤ ru(1 − u/K), x ∈ Ω, t > 0

∂u
∂n

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≤ ū0, x ∈ Ω,

then from comparison principle of the parabolic equations, it is easy to verify that u(x, t) ≤ ū(t).
Similarly, by v0(x) ≤ v̄0, we have v(x, t) ≤ v̄(t). Then (ū(x, t), v̄(x, t)) and (u(x, t), v(x, t)) are the coupled
ordered upper and lower solutions of system (1.1). This means that there is a unique global solution
(u(x, t), v(x, t)) satisfying

0 ≤ u(x, t) ≤ ū(t), 0 ≤ v(x, t) ≤ v̄(t) for all x ∈ Ω̄, t ≥ 0.

Moreover, by the strong maximum principle we see that u(x, t) > 0 and v(x, t) > 0 for (x, t) ∈ Ω̄×(0,∞).

Theorem 2.2. If (u, v) is any solution of system (1.1), then

lim sup
t→∞

max
Ω̄

u(·, t) ≤ K, lim sup
t→∞

max
Ω̄

v(·, t) ≤ max
{

0,
K(e1a − m)(1 − c) − mh

η[a(1 − e2) + m]

}
. (2.1)

Proof. It is clear that 
∂u
∂t
− du4u ≤ ru(1 − u/K), x ∈ Ω, t > 0

∂u
∂n

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥. 0, x ∈ Ω.

It follows from comparison principle of parabolic equations that the first inequality of (2.1) holds. This
means that for any ε > 0 there exists T1 > 0 such that u(x, t) ≤ K + ε for all x ∈ Ω̄ and t ≥ T1. Then

∂v
∂t
− dv4v ≤

e1a(1 − c)(K + ε)v − a(1 − e2)ηv2

h + (1 − c)(K + ε) + ηv
− mv

=
[(e1a − m)(1 − c)(K + ε) − mh − (a(1 − e2) + m)ηv]v

h + (1 − c)(K + ε) + ηv
, x ∈ Ω, t > T1

with boundary value ∂v/∂n = 0, x ∈ ∂Ω, t > T1 and initial value v(x,T1) > 0, x ∈ Ω̄. Let z1(t) be a
solution of

z′1(t) =
[(e1a − m)(1 − c)(K + ε) − mh − (a(1 − e2) + m)ηz1]z1

h + (1 − c)(K + ε) + ηz1
, t ≥ T1

with z1(T1) = max
Ω̄

v(·,T1) > 0. Note that

lim
t→∞

z1(t) = 0 if m ≥
e1aK(1 − c)
h + K(1 − c)

,
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lim
t→∞

z1(t) =
(e1a − m)(1 − c)K − mh

[a(1 − e2) + m]η
if m <

e1aK(1 − c)
h + K(1 − c)

.

From the comparison principle, we conclude that the second inequality of (2.1) holds. This completes
the proof.

Remark 2.1. It follows from Theorem 2.2 that

[0,K + ε) ×
[
0,max

{
0,

(e1a − m)(1 − c)K − mh
[a(1 − e2) + m]η

}
+ ε

)
is a global attractor of (1.1) in R2

+ for any ε > 0.

Theorem 2.3. If

rη > a(1 − c), m <
e1aK(1 − c)(rη − a(1 − c))

rηh + K(1 − c)(rη − a(1 − c))
, (2.2)

then system (1.1) is persistent, that is,

lim inf
t→∞

min
Ω̄

u(·, t) ≥
K(rη − a(1 − c))

rη
> 0,

lim inf
t→∞

min
Ω̄

v(·, t) ≥
K(e1a − m)(1 − c)(rη − a(1 − c)) − rηmh

rη2[a(1 − e2) + m]
> 0.

(2.3)

Proof. It follows from the first equation of (1.1) that
∂u
∂t
− du4u ≥ u

(
r −

a(1 − c)
η

−
ru
K

)
, x ∈ Ω, t > 0,

∂u
∂n

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥. 0, x ∈ Ω.

From comparison principle of parabolic equations, the first inequality of (3.2) holds. Then for any
ε > 0 there is T2 > 0 such that u(x, t) ≥ K(rη − a(1 − c))/(rη) − ε := A for all x ∈ Ω̄ and t ≥ T2. By the
second equation of (1.1), we have

∂v
∂t
− dv4v ≥

e1aA(1 − c)v − a(1 − e2)ηv2

h + (1 − c)A + ηv
− mv, x ∈ Ω, t > T2

∂v
∂n

= 0, x ∈ ∂Ω, t > T2,

u(x,T2) > 0, x ∈ Ω̄.

Note that if z2(t) is a solution of

z′2(t) =
[(e1a − m)(1 − c)A − mh − (a(1 − e2) + m)ηz2]z2

h + (1 − c)A + ηz2
, t ≥ T2

with z2(T2) = min
Ω̄

v(·,T2) > 0, then

lim
t→∞

z2(t) =
K(e1a − m)(1 − c)(rη − a(1 − c)) − rηmh

rη2[a(1 − e2) + m]

since (2.2) holds. This proves that the second inequality of (3.2) holds. The proof is completed.
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3. Analysis of constant steady states

In this section, we investigate the existence and stability of constant steady states of system (1.1).
The constant steady states of (1.1) are listed below: the extinct steady state E0 : (0, 0); the predator-
extinction steady state E1 : (K, 0); the coexistence steady state E2 : (ū, v̄). To establish the stability
of the above constant steady states of (1.1), we first make some notations. It is well-known that the
operator −∆ in Ω with the homogeneous Neumann boundary condition has eigenvalues

µi ∈ Λ := {µi : 0 = µ0 < µ1 < · · · < µi < · · · , i ∈ N0} , (3.1)

where N0 := N
⋃
{0}. Let S (µi) be the subspace generated by the eigenfunctions φi j corresponding to

µi, m(µi) be the multiplicity of µi, and {φi j}
m(µi)
j=1 be an orthonormal basis of S (µi). Define Xi j = {cφi j :

c ∈ R2}, Xi =
⊕m(µi)

j=1 Xi j, and

X =

{
(u1, u2)T ∈

[
C1(Ω̄)

]2
: ∂νu1 = ∂νu2 = 0 on ∂Ω

}
(3.2)

satisfying X =
⊕∞

i=0 Xi. We linearize the system (1.1) about a constant steady state (û, v̂) and obtain(
ϕt

ψt

)
= H(û,v̂)

(
ϕ

ψ

)
:= D

(
∆ϕ

∆ψ

)
+ J(û,v̂)

(
ϕ

ψ

)
, (3.3)

with domain XH =
{
(ϕ, ψ) ∈ [C1(Ω × R+)]2 : ∂ϕ/∂ν = ∂ψ/∂ν = 0

}
, where

D =

(
du 0
0 dv

)
, J(û,v̂) =

(
a11 a12

a21 a22

)
and

a11 = r −
2rû
K
−

ah(1 − c)v̂ + aη(1 − c)v̂2

(h + (1 − c)û + ηv̂)2 , a12 = −
ah(1 − c)û + a(1 − c)2û2

(h + (1 − c)û + ηv̂)2 ,

a21 =
e1ah(1 − c)v̂ + e1aη(1 − c)v̂2 + aη(1 − e2)(1 − c)v̂2

(h + (1 − c)û + ηv̂)2 ,

a22 =
e1ah(1 − c)û − 2ahη(1 − e2)v̂ + e1a(1 − c)2û2 − aη2(1 − e2)v̂2 − 2aη(1 − e2)(1 − c)ûv̂

(h + (1 − c)û + ηv̂)2 − m.

(û, v̂) is locally asymptotically stable if all eigenvalues of the operator H(û,v̂) have negative real part,
and it is unstable if at least one eigenvalue has positive real part. In the following subsections, we will
discuss the existence, local stability and global stability of E0, E1 and E2.

3.1. The extinct steady state and predator-extinction steady state

This subsection focuses on the existence and stability of the extinct steady state E0 and the predator-
extinction steady state E1. It is clear that E0 and E1 always exist.

Theorem 3.1. E0 is always unstable with respect to (1.1).

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1445–1470.
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Proof. It follows from (3.1) and (3.3) that the corresponding k-th characteristic equation for the
linearized system of (1.1) at E0 is

λ2 − (−(du + dv)µk + r − m)λ + (dudvµk + (dum − dvr)µk − rm) = 0.

Note that two eigenvalues are r and −m when k = 0. This means that E0 is unstable.

Theorem 3.2. If m > e1aK(1 − c)/(h + K(1 − c)), then E1 is globally asymptotically stable with
respect to (1.1).

Proof. From (3.3), we have

J(K,0) =


−r −

aK(1 − c)
h + K(1 − c)

0
e1aK(1 − c)
h + K(1 − c)

− m

 .
It follows from (3.1) that the corresponding k-th characteristic equation for the linearized system of
(1.1) at E1 is

(λ + dvµk + r)(λ + duµk + m − e1aK(1 − c)/(h + K(1 − c))) = 0.

It is clear that λ < 0 for any k ∈ N0 if m > e1a(1 − c)/(h + K(1 − c)), which implies that E1 is locally
asymptotically stable.

From (2.1), we conclude that if m > e1aK(1 − c)/(h + K(1 − c)), then

lim sup
t→∞

max
Ω̄

u(·, t) ≤ K, lim sup
t→∞

max
Ω̄

v(·, t) = 0. (3.4)

This means that v→ 0 uniformly on Ω̄ as t → ∞. For any ε > 0 there exists T > 0 such that v(x, t) ≤ ε
for all x ∈ Ω̄ and t ≥ T . From the first equation of (1.1), we have

∂u
∂t
− du4u ≥ u

(
r −

ru
K
−

aε(1 − c)
h + ηε

)
, x ∈ Ω, t > T

∂u
∂n

= 0, x ∈ ∂Ω, t > T,

u(x,T ) > 0, x ∈ Ω.

Note that if z(t) is a solution of

z′(t) = u
(
r −

ru
K
−

aε(1 − c)
h + ηε

)
, t ≥ T

with z(T ) = min
Ω̄

u(·,T ) > 0, then limt→∞ z(t) = K since ε is sufficiently small. By using comparison

principle of parabolic equations, we obtain lim inft→∞minΩ̄ u(·, t) ≥ K since ε is sufficiently small.
Combining with the first inequality of (3.4) gives u→ K uniformly on Ω̄ as t → ∞, which means that
K is globally attractive. Hence, E1 is globally asymptotically stable.
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3.2. The coexistence steady state

The interior coexistence steady state (ū, v̄) can be obtained by solving

r
(
1 −

u
K

)
−

a(1 − c)v
h + (1 − c)u + ηv

= 0,
e1a(1 − c)u − aη(1 − e2)v

h + (1 − c)u + ηv
− m = 0. (3.5)

Let
γ = rηK(1 + e1 − e2)(1 − c) − rhη(1 − e2) − K(e1a − m)(1 − c)2.

A direct calculation gives

ū =
γ +

√
γ2 + 4rhηK(1 + e1 − e2)(1 − c)(rη(1 − e2) + m(1 − c))

2rη(1 + e1 − e2)(1 − c)
,

v̄ = ((e1a − m)(1 − c)ū − mh)/(aη(1 − e2) + ηm).
(3.6)

Note that ū > K and v̄ < 0 when m > e1aK(1 − c)/(h + K(1 − c)), ū = K and v̄ = 0 when m =

e1aK(1− c)/(h + K(1− c)), 0 < ū < K and v̄ > 0 when m < e1aK(1− c)/(h + K(1− c)). Therefore, we
conclude that if

m < e1aK(1 − c)/(h + K(1 − c)), (3.7)

then system (1.1) has a unique coexistence positive constant steady state E2.
We now establish the local stability and global stability of E2. Let

α =
K(1 − c)(m + a(1 − e2)) − ah(1 − e2)

a(1 − c)(1 − e2 + e1) + (1 − c)(m + a(1 − e2))
.

We first give a relatively strong local stability criterion for E2.

Theorem 3.3. If (3.7) and ū ≥ α hold, then E2 is locally asymptotically stable with respect to (1.1).

Proof. It follows from (3.3) that

J(ū,v̄) =

(
ā11 ā12

ā21 ā22

)
,

where

ā11 = ū
(
−

r
K

+
a(1 − c)2v̄

(h + (1 − c)ū + ηv̄)2

)
, ā12 = −

ah(1 − c)ū + a(1 − c)2ū2

(h + (1 − c)ū + ηv̄)2 ,

ā21 =
e1ah(1 − c)v̄ + e1aη(1 − c)v̄2 + aη(1 − e2)(1 − c)v̄2

(h + (1 − c)ū + ηv̄)2 ,

ā22 = −
e1aη(1 − c)ūv̄ + ahη(1 − e2)v̄ + aη(1 − e2)(1 − c)ūv̄

(h + (1 − c)ū + ηv̄)2 .

(3.8)

The corresponding k-th characteristic equation for the linearized system of (1.1) at E2 is

λ2 − Tkλ + Dk = 0, (3.9)

where

Tk = − (du + dv)µk + ā11 + ā22,

Dk =dudvµ
2
k − (duā22 + dvā11)µk + ā11ā22 − ā12ā21.

(3.10)
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Note that if Tk < 0 and Dk > 0 for all k ∈ N0, then E2 is locally asymptotically stable. From (3.5), we
have

ā11 = ū
(
−

r
K

+
(1 − c)r(1 − ū/K)

(1 − e2 + e1)(1 − c)ū + h(1 − e2)

)
≤ 0.

if ū ≥ α. Combining with (3.8) gives Tk < 0 and Dk > 0 for all k ∈ N0.

Let

q1 = (1 − c)(a(1 − e2) + m)(η(1 + e1 − e2) − (1 − c)) − a(1 − c)2(1 + e1 − e2),
q2 = (a(1 − e2) + m)(η(1 − e2)(h − K(1 − c)) + K(1 − c)(1 − c − e1η)) − ah(1 − e2)(1 − c),
q3 = −hηK(1 − e2)(m + a(1 − e2)).

Theorem 3.4. Assume that (3.7) and ū < α hold. If

q1ū2 + q2ū + q3 < 0, (3.11a)

ā11ā22 − 2ā12ā21 − 2
√

ā12ā21(ā12ā21 − ā11ā22)
ā2

22

<
du

dv
, (3.11b)

then E2 is locally asymptotically stable with respect to (1.1).

Proof. It follows from (3.9) and (3.10) that

Tk = −(du + dv)µk + ā11 + ā22

= −(du + dv)µk +
r(q1ū2 + q2ū + q3)

Ka(1 − c)(h(1 − e2) + (1 − c)(1 − e2 + e1)ū)
< 0

for all k ∈ N0 if (3.11a) holds. A direct calculation gives ā11ā22 − ā12ā21 > 0. From the second equality
of (3.10), we have the following two cases: (1) −ā11/ā22 ≤ du/dv. It is clear that Dk > 0 for all k ∈ N0

and µk ∈ Λ since dudv > 0 and ā11ā22 − ā12ā21 > 0; (2) −ā11/ā22 > du/dv. It is not difficult to show that
if

ā11ā22 − 2ā12ā21 − 2A
ā2

22

<
du

dv
<

ā11ā22 − 2ā12ā21 + 2A
ā2

22

,

where A =
√

ā12ā21(ā12ā21 − ā11ā22), then (duā22 + dvā11)2 − 4dudv(ā11ā22 − ā12ā21) < 0, which implies
that Dk > 0 for all k ∈ N0. Hence, if (3.11b) holds, then we have Dk > 0 for all k ∈ N0 since

ā11ā22 − 2ā12ā21 − 2A
ā2

22

< −
ā11

ā22
<

ā11ā22 − 2ā12ā21 + 2A
ā2

22

.

The proof is completed.

Remark 3.1. The local stability of E2 is independent of diffusion coefficient du, dv when ū ≥ α in
Theorem 3.3, and related to diffusion coefficient du, dv when ū < α in Theorem 3.4.

Let

∆1 = {(m, η, h)|m < B1, η > a(1 − c)/r, h ≥ K(1 − c)},
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∆2 = {(m, η, h)|m ≤ B2, η > a(1 − c)/r, h < K(1 − c)},
∆3 = {(m, η, h)|B2 < m < B1, η > max{a(1 − c)/r, A1}, h < K(1 − c)},
∆4 = {(m, η, h)|B3 ≤ m < B1, max{a(1 − c)/r, A2} < η ≤ A1, h < K(1 − c)},

where

A1 = Ka(1 − c)2(e1 + (1 − e2))/[2rh(1 − e2)],
A2 = Ka(1 − c)2(e1 + (1 − e2))/[re1(K(1 − c) − h) + rh(1 − e2) + rK(1 − e2)(1 − c)],
B1 = e1aK(1 − c)(rη − a(1 − c))/[rηh + K(1 − c)(rη − a(1 − c))],
B2 = [raη(1 − e2)(h − K(1 − c)) + e1aK(1 − c)(rη − a(1 − c))]/[K(1 − c)(2rη − a(1 − c))],
B3 = a(e1 + e2 − 1)/2.

By direct calculation, we conclude that B2 ≥ B1 when h ≥ K(1 − c); B1 > B2 > B3 when h < K(1 − c)
and η > A1; B1 > B3 ≥ B2 when h < K(1 − c) and A2 < η ≤ A1.

We next investigate the global stability of E2 by using the upper and lower solutions method.

Theorem 3.5. E2 is globally asymptotically stable with respect to (1.1) if (m, η, h) ∈ ∆1,∆2,∆3,∆4.

Proof. Note that if (m, η, h) ∈ ∆1,∆2,∆3,∆4, then (3.7) and (2.2) hold. It follows from Theorem 2.2
that

lim sup
t→∞

max
Ω̄

u(·, t) ≤ K := ū1 > 0, lim sup
t→∞

max
Ω̄

v(·, t) ≤
(e1a − m)(1 − c)ū1 − mh

η[a(1 − e2) + m]
:= v̄1 > 0.

From Theorem 2.3, we have

lim inf
t→∞

min
Ω̄

u(·, t) ≥
K(rη − a(1 − c))

rη
:= u1 > 0,

lim inf
t→∞

min
Ω̄

v(·, t) ≥
(e1a − m)(1 − c)u1 − mh

η[a(1 − e2) + m]
:= v1 > 0.

For any 0 < ε < v1 there exists a T > 0 such that v ≥ v1 − ε and v ≤ v̄1 + ε for all (t, x) ∈ [T,∞) × Ω̄.
Then

ut − du4u ≤ ru
(
1 −

u
K

)
−

a(1 − c)u(v1 − ε)
h + (1 − c)ū1 + η(v1 − ε)

=
u[r(h + (1 − c)ū1 + η(v1 − ε))(K − u) − Ka(1 − c)(v1 − ε)]

K(h + (1 − c)ū1 + η(v1 − ε))
,

and

ut − du4u ≥ ru
(
1 −

u
K

)
−

a(1 − c)u(v̄1 + ε)
h + (1 − c)u1 + η(v̄1 + ε)

=
u[r(h + (1 − c)u1 + η(v̄1 + ε))(K − u) − Ka(1 − c)(v̄1 + ε)]

K(h + (1 − c)u1 + η(v̄1 + ε))
,

which imply that

lim sup
t→∞

max
Ω̄

u(·, t) ≤ K −
Ka(1 − c)v1

r(h + (1 − c)ū1 + ηv1)
:= ū2 > 0,
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lim inf
t→∞

min
Ω̄

u(·, t) ≥ K −
Ka(1 − c)v̄1

r(h + (1 − c)u1 + ηv̄1)
:= u2 > 0.

Let

ϕ1(s1, s2) = K −
Ka(1 − c)s2

r(h + (1 − c)s1 + ηs2)
, s1, s2 > 0,

ϕ2(s) =
(e1a − m)(1 − c)s − mh

η(a(1 − e2) + m)
, s > 0.

A direct calculation gives
∂ϕ1

∂s1
> 0,

∂ϕ1

∂s2
< 0, ϕ′2(s) > 0. (3.12)

Hence,
u1 < u2 = ϕ1(u1, v̄1) < ϕ1(ū1, v1) = ū2 < ū1, v1 = ϕ1(u1) < ϕ1(ū1) = v̄1.

We construct four sequences {ui}, {vi}, {ūi} and {v̄i} by

ui+1 = ϕ1(ui, v̄i), ūi+1 = ϕ1(ūi, vi), vi = ϕ2(ui), v̄i = ϕ2(ūi), (3.13)

ui ≤ lim inf
t→∞

min
Ω̄

u(·, t) ≤ lim sup
t→∞

max
Ω̄

u(·, t) ≤ ūi,

vi ≤ lim inf
t→∞

min
Ω̄

v(·, t) ≤ lim sup
t→∞

max
Ω̄

v(·, t) ≤ v̄i.
(3.14)

It follows from (3.12) and (3.13) that

ui < ui+1 = ϕ1(ui, v̄i) < ϕ1(ūi, vi) = ūi+1 < ūi,

vi < vi+1 = ϕ1(ui+1) < ϕ1(ūi+1) = v̄i+1 < v̄i.

Then we have
lim
i→∞

ui = ψ, lim
i→∞

ūi = ψ̄, lim
i→∞

vi = φ, lim
i→∞

v̄i = φ̄ (3.15)

and 0 < ψ ≤ ψ̄, 0 < φ ≤ φ̄. By (3.13), we get

ψ = ϕ1(ψ, φ̄), ψ̄ = ϕ1(ψ̄, φ), φ = ϕ2(ψ), φ̄ = ϕ2(ψ̄)

and then

ψ = K −
Ka(1 − c)φ̄

r(h + (1 − c)ψ + ηφ̄)
, ψ̄ = K −

Ka(1 − c)φ

r(h + (1 − c)ψ̄ + ηφ)
, (3.16a)

φ =
(e1a − m)(1 − c)ψ − mh

η(a(1 − e2) + m)
, φ̄ =

(e1a − m)(1 − c)ψ̄ − mh
η(a(1 − e2) + m)

. (3.16b)

We now prove ψ = ψ̄ and φ = φ̄. Two equations subtraction in (3.16b) gives

φ̄ − φ =
(e1a − m)(1 − c)(ψ̄ − ψ)

(η(a(1 − e2) + m))
,
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which means that if φ̄ = φ, then ψ̄ = ψ, and vice versa. Substituting (3.16b) into (3.16a), we obtain

rη(K−ψ)(ah(1−e2)+(1−c)((a(1−e2)+m)ψ+(e1a−m)ψ̄)) = Ka(1−c)((e1a−m)(1−c)ψ̄−mh) (3.17)

rη(K−ψ̄)(ah(1−e2)+(1−c)((a(1−e2)+m)ψ̄+(e1a−m)ψ)) = Ka(1−c)((e1a−m)(1−c)ψ−mh) (3.18)

(3.17) minus (3.18) gives

Ka(1 − c)2(e1a − m)(ψ̄ − ψ) = raηh(1 − e2)(ψ̄ − ψ)

+ rη(1 − c)(a(1 − e2) + m)(ψ̄ − ψ)(ψ̄ + ψ − K)

+ rηK(1 − c)(e1a − m)(ψ̄ − ψ).

If ψ̄ , ψ, then

ψ̄ + ψ =
K(1 − c)[a(1 − c)(e1a − m) + rη(a(1 − e2) + m) − rη(e1a − m)] − raηh(1 − e2)

rη(1 − c)(a(1 − e2) + m)
.

This shows that if (m, η, h) ∈ ∆1,∆2, then ψ̄ + ψ < 0, which is a contradiction. (3.17) plus (3.18) gives

ψ̄ψ =
ahK(m(1 − c) + rη(1 − e2)) + K(e1a − m)(1 − c)(rη − a(1 − c))(ψ̄ + ψ)

rη(1 − c)((e1a − m) − (a(1 − e2) + m))
.

This proves that if (m, η, h) ∈ ∆3,∆4, then ψ̄ψ < 0, which is a contradiction. The above results
suggest that ψ̄ = ψ and φ̄ = φ if (m, η, h) ∈ ∆1,∆2,∆3,∆4. Combining with (3.5), we have ψ̄ = ψ = ū
and φ̄ = φ = v̄. From (3.14) and (3.15), we obtain limt→∞(u(x, t), v(x, t)) = (ū, v̄) uniformly on Ω̄. The
proof is complete.

3.3. Turing instability

It has proved that diffusion could destabilize an otherwise stable steady state of the
reaction-diffusion system and lead to nonuniform spatial patterns. This kind of instability, essentially
originated in landmark work of Turing [35], is usually called Turing instability or diffusion-driven
instability.

We assume that ū < α, (3.11a) and

0 <
du

dv
<

ā11ā22 − 2ā12ā21 − 2
√

ā12ā21(ā12ā21 − ā11ā22)
ā2

22

(3.19)

hold. Then the quadratic equation dudvω
2 − (duā22 + dvā11)ω+ ā11ā22 − ā12ā21 = 0 has two real positive

roots

ω1(du, dv) =
duā22 + dvā11 −

√
(duā22 + dvā11)2 − 4dudv(ā11ā22 − ā12ā21)

2dudv
,

ω2(du, dv) =
duā22 + dvā11 +

√
(duā22 + dvā11)2 − 4dudv(ā11ā22 − ā12ā21)

2dudv
.

Theorem 3.6. Assume that ū < α, (3.11a) and (3.19) hold. Then we have the following conclusions:
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(i) if Λ ∩ (ω1(du, dv), ω2(du, dv)) = ∅, then E2 is locally asymptotically stable with respect to (1.1);
(ii) if Λ ∩ (ω1(du, dv), ω2(du, dv)) , ∅, then the positive constant steady state E2 of system (1.1) is

Turing unstable;
(iii) for a fixed dv > 0, there exists d∗ > 0 such that E2 is Turing unstable when 0 < du < d∗;
(iv) there exists d∗ > 0 such that E2 is locally asymptotically stable when dv > d∗ and du > ā11/µ1.

Proof. Obviously, (i) and (ii) hold. Note that

lim
du→0

ω1(du, dv) = (ā11ā22 − ā12ā21)/(dvā11) > 0, lim
du→0

ω2(du, dv) = ∞

for a fixed dv > 0 and
lim

dv→∞
ω1(du, dv) = 0, lim

dv→∞
ω2(du, dv) = ā11/du > 0

for a fixed du > 0. This implies that (iii) and (iv) hold.

3.4. Simulations

In this subsection, we do some numerical simulations to illustrate our analysis of steady states for
system (1.1). This has been showed that at some stage in the life cycle, 90% of some zooplankton’s
food is obtained by cannibalism [12]. This also means that cannibalism is widespread in aquatic
systems. Therefore, here the set of parameter values we use is derived from the
phytoplankton-zooplankton system. The values of all parameters are listed in Table 2.

Table 2. Numerical values of parameters of system (1.1) with references.

Symbol Values Units Source Symbol Values Units Source
du, dv 0.1 m2 day−1 [36, 37] r 0.5 day−1 [12, 38]
K 10 mg L−1 [12, 38] a 0.4 day−1 [12, 38]
h 0.6 mg L−1 [12, 38] m 0.15 day−1 [12, 38]
c 0.45 – Assumption η 0.47 – Assumption
e1 0.48 – Assumption e2 0.1 – Assumption

Figure 1. Predator-extinction steady state E1. Here m = 0.18, Ω = [0, 40] and other
parameters are from Table 2.
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Figure 2. Coexistence steady state E2. Here m = 0.06, Ω = [0, 40] and other parameters are
from Table 2.

Figure 3. Turing instability. Here du = 0.01, dv = 10, η = 0.11,m = 0.06,Ω = [0, 40] and
other parameters are from Table 2.

In mathematical theory, the total extinction of predator and prey will never occur since E0 is unstable
(see Theorem 3.1). However, this can happen in real nature when the predator and prey density become
very small. Figure 1 and Figure 2 show solutions of (1.1) converge to constant steady states E1 or E2

for different parameter value m while other parameters are from Table 2. For the case of m = 0.18,
one can see that the extinction of predator with prey reaching its carrying capacity (E1) is a possible
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outcome of system (1.1) (see Theorem 3.2 and Figure 1). For m = 0.06, predator and prey can coexist
together at a positive constant steady state E2 (see Figure 2). In Figure 3, Turing instability may arise
from system (1.1) if (ii) or (iii) in Theorem 3.6 holds. Turing instability destroys the spatial symmetry
and causes the pattern formation which is stationary in time and oscillatory in space [6, 39].

4. Nonconstant positive steady state solutions

As an indication of dynamical complexity of predator-prey systems, it is important to investigate the
existence of nonconstant positive steady state solutions, also called stationary patterns, in the spatially
inhomogeneous case. In this section, we explore the nonexistence and existence of nonconstant positive
steady state solutions of (1.1), which satisfy

−du4u = ru
(
1 −

u
K

)
−

a(1 − c)uv
h + (1 − c)u + ηv

, x ∈ Ω,

−dv4v =
e1a(1 − c)uv − a(1 − e2)ηv2

h + (1 − c)u + ηv
− mv, x ∈ Ω,

∂u
∂n

= 0,
∂v
∂n

= 0, x ∈ ∂Ω.

(4.1)

4.1. A priori estimates and nonexistence of nonconstant solutions

To establish the existence and nonexistence of nonconstant positive steady state solutions, we need
to derive some a priori estimates for positive solutions of (4.1). We introduce the following maximum
principle.

Lemma 4.1. (Maximum principle [5,40]) Assume that f ∈ C(Ω) and c j ∈ C(Ω) with j = 1, 2, · · · , n.

(i) If ω ∈ C2(Ω) ∩C1(Ω̄) satisfies4ω +
∑n

j=1 c j(x)ωx j + f (x) ≥ 0, x ∈ Ω,

∂νω ≤ 0, x ∈ ∂Ω

and ω(x0) = max
x∈Ω̄

ω(x), then f (x0) ≥ 0;

(ii) If ω ∈ C2(Ω) ∩C1(Ω̄) satisfies4ω +
∑n

j=1 c j(x)ωx j + f (x) ≤ 0, x ∈ Ω,

∂νω ≥ 0, x ∈ ∂Ω

and ω(x0) = min
x∈Ω̄

ω(x), then f (x0) ≤ 0.

We first have a priori upper bound estimates for any positive solution of (4.1).

Lemma 4.2. Assume that (u(x), v(x)) is a positive solution of (4.1). If (3.7) holds, then

0 < max
Ω̄

u(x) ≤ K, 0 < max
Ω̄

v(x) ≤ (K(e1a − m)(1 − c) − mh)/(η(a(1 − e2) + m)). (4.2)
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Proof. Let u(x1) = max
Ω̄

u(x), v(x2) = max
Ω̄

v(x). From (4.1), we have

−du4u ≤ ru(1 − u/K), x ∈ Ω, ∂u/∂n = 0, x ∈ ∂Ω.

By Lemma 4.1, we obtain ru(x1)(1 − u(x1)/K) ≥ 0, which means that max
Ω̄

u(x) ≤ K. It follows from

(4.1) that

−dv4v ≤
e1aK(1 − c)v − a(1 − e2)ηv2

h + K(1 − c) + ηv
− mv, x ∈ Ω, ∂v/∂n = 0, x ∈ ∂Ω.

Lemma 4.1 shows that

e1aK(1 − c)v(x2) − a(1 − e2)ηv(x2)2

h + K(1 − c) + ηv(x2)
− mv(x2) ≥ 0.

Then max
Ω̄

v(x) ≤ (K(e1a − m)(1 − c) − mh)/(η(a(1 − e2) + m)).

We now establish the nonexistence of nonconstant positive solutions of (4.1) if the diffusion
coefficients du and dv are large.

Theorem 4.1. If (3.7) holds, then there is a d̂ > 0 such that system (4.1) has no nonconstant positive
solution when du, dv ≥ d̂.

Proof. Let (u, v) be a positive solution of system (4.1), and denote ũ = |Ω|−1
∫

Ω
udx, ṽ = |Ω|−1

∫
Ω

vdx.
Then

∫
Ω

(u − ũ)dx =
∫

Ω
(v − ṽ)dx = 0. Multiplying the first equation of system (4.1) by u − ũ, and

integrating over Ω, we obtain

du

∫
Ω

|∇(u − ũ)|2dx =

∫
Ω

(u − ũ)ru
(
1 −

u
K

)
dx −

∫
Ω

(u − ũ)
a(1 − c)uv

h + (1 − c)u + ηv
dx

=

∫
Ω

(u − ũ) [ru(1 − u/K) − rũ(1 − ũ/K)] dx

−

∫
Ω

(u − ũ)
[

a(1 − c)uv
h + (1 − c)u + ηv

−
a(1 − c)ũṽ

h + (1 − c)ũ + ηṽ

]
dx

≤ r
∫

Ω

(u − ũ)2dx −
∫

Ω

a(1 − c)ũ(h + (1 − c)u)(u − ũ)(v − ṽ)
(h + (1 − c)u + ηv)(h + (1 − c)ũ + ηṽ)

dx

−

∫
Ω

a(1 − c)v(h + ηṽ)(u − ũ)2

(h + (1 − c)u + ηv)(h + (1 − c)ũ + ηṽ)
dx

≤ r
∫

Ω

(u − ũ)2dx −
∫

Ω

a(1 − c)ũ(h + (1 − c)u)(u − ũ)(v − ṽ)
(h + (1 − c)u + ηv)(h + (1 − c)ũ + ηṽ)

dx

≤

(
r +

a
2

) ∫
Ω

(u − ũ)2dx +
a
2

∫
Ω

(v − ṽ)2dx.

From Lemma 4.2, max
Ω̃

v(x) ≤ (K(e1a−m)(1− c)−mh)/(η(a(1− e2) + m)) := δ. Multiplying the second

equation of system (4.1) by v − ṽ, and integrating over Ω, we have

dv

∫
Ω

|∇(v − ṽ)|2dx =

∫
Ω

(v − ṽ)
[
e1a(1 − c)uv − a(1 − e2)ηv2

h + (1 − c)u + ηv
− mv

]
dx
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=

∫
Ω

(v − ṽ)
[
e1a(1 − c)uv − a(1 − e2)ηv2

h + (1 − c)u + ηv
− mv

]
dx

−

∫
Ω

(v − ṽ)
[
e1a(1 − c)ũṽ − a(1 − e2)ηṽ2

h + (1 − c)ũ + ηṽ
− mṽ

]
dx

= −m
∫

Ω

(v − ṽ)2dx +

∫
Ω

a(1 − c)v[e1(h + ηṽ) + η(1 − e2)v](u − ũ)(v − ṽ)
(h + (1 − c)u + ηv)(h + (1 − c)ũ + ηṽ)

dx

−

∫
Ω

aη(1 − e2)(h + (1 − c)u)(v − ṽ)2(v + ṽ) + aη2(1 − e2)vṽ(v − ṽ)2

(h + (1 − c)u + ηv)(h + (1 − c)ũ + ηṽ)
dx

+

∫
Ω

e1a(1 − c)ũ(h + (1 − c)u)(v − ṽ)2

(h + (1 − c)u + ηv)(h + (1 − c)ũ + ηṽ)
dx

≤ (e1a − m)
∫

Ω

(v − ṽ)2dx +

(
e1a(1 − c)

2η
+

aδ(1 − c)(1 − e2)
2h

) ∫
Ω

(u − ũ)2dx

+

(
e1a(1 − c)

2η
+

aδ(1 − c)(1 − e2)
2h

) ∫
Ω

(v − ṽ)2dx.

Let

C1 = r +
a
2

+
e1a(1 − c)

2η
+

aδ(1 − c)(1 − e2)
2h

,

C2 = e1a − m +
a
2

+
e1a(1 − c)

2η
+

aδ(1 − c)(1 − e2)
2h

.

Hence, by the Poincaré inequality, we get

du

∫
Ω

|∇(u − ũ)|2dx + dv

∫
Ω

|∇(v − ṽ)|2dx ≤ C1

∫
Ω

(u − ũ)2dx + C2

∫
Ω

(v − ṽ)2dx

≤
C1

µ1

∫
Ω

(u − ũ)2dx +
C2

µ1

∫
Ω

(v − ṽ)2dx.

This means that if min{du, dv} > max{C1/µ1,C2/µ2}, then ∇(u − ũ) = ∇(v − ṽ) = 0 and u ≡ ũ, v ≡ ṽ.

4.2. Existence of nonconstant positive steady state solutions

In this part, we explore the existence of nonconstant positive solutions to (4.1) by using degree
theory. To do this, we recall the following Harnack inequality.

Lemma 4.3. (Harnack inequality [5, 41]) If u ∈ C2(Ω) ∩C1(Ω̄) is a positive solution of4u(x) + b(x)u(x) = 0, x ∈ Ω,

∂νu = 0, x ∈ ∂Ω,

where b ∈ C(Ω) ∩ L∞(Ω), then there exists a positive constant L which depends only on M, satisfying
‖b‖∞ ≤ M, such that

max
Ω̄

u(x) ≤ L min
Ω̄

u(x).

We now establish a prior lower bound estimates for positive solutions of system (4.1).
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Lemma 4.4. If (u(x), v(x)) is a positive solution of (4.1) and (3.7) holds, then there exists a constant
C > 0 depending possibly on du, dv,Ω, n and parameters of (4.1), such that

min
Ω̄

u(x) ≥ C, min
Ω̄

v(x) ≥ C. (4.3)

Proof. Let u(x3) = min
Ω̄

u(x). From (4.1) and Lemma 4.1, we have

r − ru(x3)/K − a(1 − c)v(x3)/(h + (1 − c)u(x3) + ηv(x3)) ≤ 0.

Hence,
ru(x3)/K + a(1 − c)v(x3)/h ≥ r. (4.4)

Let

b1(x) =
1
du

[
r
(
1 −

u
K

)
−

a(1 − c)v
h + (1 − c)u + ηv

]
, b2(x) =

1
dv

[
e1a(1 − c)u − a(1 − e2)ηv

h + (1 − c)u + ηv
− m

]
.

There is a positive constant M depending on du, dv,Ω, n and parameters of (4.1) such that ‖b1‖∞ ≤ M,
‖b2‖∞ ≤ M since (4.2) holds. By using Harnack inequality in Lemma 4.3, there exists a positive
constant L which depends only on M such that

max
Ω̄

u(x) ≤ L min
Ω̄

u(x), max
Ω̄

v(x) ≤ L min
Ω̄

v(x).

It only need to prove that there exists a L̄ > 0 such that

max
Ω̄

u(x) ≥ L̄ and max
Ω̄

v(x) ≥ L̄.

If it is not true, then there exists a sequence of positive solutions {(un(x), vn(x))}∞n=1 such that

max
Ω̄

un(x)→ 0 or max
Ω̄

vn(x)→ 0 as n→ ∞. (4.5)

From the standard regularity theorem for the elliptic equations, there exists a subsequence of
{(un, vn)}∞n=1, which we still denote by {(un, vn)}∞n=1, and two nonnegative functions û, v̂ ∈ C2(Ω̄) such
that un → û and vn → v̂ in C2(Ω̄) as n → ∞. By (4.2), (4.5) and (4.4), we have 0 < û ≤ K and either
û ≡ 0, v̂ . 0 or û . 0, v̂ ≡ 0. Note that (un, vn) is a positive solution of (4.1), then∫

Ω

un

[
r −

run

K
−

a(1 − c)vn

h + (1 − c)un + ηvn

]
dx = 0, (4.6a)∫

Ω

vn

[
e1a(1 − c)un − a(1 − e2)ηvn

h + (1 − c)un + ηvn
− m

]
dx = 0. (4.6b)

If û ≡ 0, v̂ . 0, then
e1a(1 − c)un − a(1 − e2)ηvn

h + (1 − c)un + ηvn
− m < 0, x ∈ Ω̄

for sufficiently large n since un → 0 as n → ∞. It is a contradiction to (4.6b) since vn > 0. If
û . 0, v̂ ≡ 0, then from (4.6a), we obtain

∫
Ω

û(1 − û/K)dx = 0. It follows from 0 < û ≤ K that û ≡ K.
Thus, we have

e1a(1 − c)un − a(1 − e2)ηvn

h + (1 − c)un + ηvn
− m→

e1aK(1 − c)
h + K(1 − c)

− m < 0
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as n→ ∞ since (3.7) holds. This contradicts (4.6b).
Summarizing the discussion above, we conclude that (4.5) holds, which implies that (4.3) holds.

This completes the proof.

We now investigate the existence of nonconstant positive solutions of system (4.1) by using the
Leray-Schauder degree theory ( [42]) and the methods in [5, 43]. Denote

Θ = {(u, v) ∈ X|C/2 ≤ u(x), v(x) ≤ 2C̄ for all x ∈ Ω̄},

where C̄ = max{K, (K(e1a−m)(1− c)−mh)/(η(a(1− e2) + m))} and X can be found in (3.2). Note that
if (3.7) holds, then (4.1) has a unique positive constant solution E2 = (ū, v̄). Let

G(U) =


ru

(
1 −

u
K

)
−

a(1 − c)uv
h + (1 − c)u + ηv

e1a(1 − c)uv − a(1 − e2)ηv2

h + (1 − c)u + ηv
− mv

 (4.7)

with U = (u, v)T ∈ X and (I − 4)−1 be the inverse of I − 4. Then system (4.1) can be rewritten as

F(du, dv,U) = U − (I − 4)−1{D−1G(U) + U} = 0 (4.8)

where I − 4 satisfies the homogeneous Neumann boundary condition. Frechét derivative of system
(4.8) with respect to (u, v) at (ū, v̄) is

FU(du, dv, ū, v̄) = I − (I − 4)−1{D−1GU(ū, v̄) + I} = 0.

It is clear that ζ is an eigenvalue of FU(d1, d2, ū, v̄) on Xi with i ∈ N0 if and only if ζ(1 + µi) is an
eigenvalue of the matrix

Li = µiI − D−1GU(ū, v̄) =

(
µi − ā11/du ā12/du

ā21/dv µi − ā22/dv

)
.

Then
det Li =

1
dudv

(dudvµ
2
i − (duā22 + dvā11)µi + ā11ā22 − ā12ā21) =

1
dudv

S (du, dv, µi),

where
S (du, dv, µ) = dudvµ

2 − (duā22 + dvā11)µ + ā11ā22 − ā12ā21.

From Subsection 3.3, if ū < α and (3.19) hold, then S (du, dv, µ) = 0 has two positive roots

µ−(du, dv) = ω1(du, dv) =
duā22 + dvā11 −

√
(duā22 + dvā11)2 − 4dudv(ā11ā22 − ā12ā21)

2dudv
,

µ+(du, dv) = ω2(du, dv) =
duā22 + dvā11 +

√
(duā22 + dvā11)2 − 4dudv(ā11ā22 − ā12ā21)

2dudv

and
lim

dv→∞
µ−(du, dv) = 0, lim

dv→∞
µ+(du, dv) = ā11/du > 0 (4.9)

for a fixed du > 0. Let

W(du, dv) = {µ ≥ 0 : µ−(du, dv) < µ < µ+(du, dv)} .
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Lemma 4.5. ( [5]) If S (du, dv, µi) , 0 for all µi ∈ Λ, then index(F(du, dv, ·), (ū, v̄)) = (−1)σ, where
σ =

∑
µi∈W(du,dv)∩Λ

m(µi) whenW(du, dv) ∩ Λ , φ and σ = 0 whenW(du, dv) ∩ Λ = φ. In particular, if

S (du, dv, µ) > 0 for all µ ≥ 0, then σ = 0.

Theorem 4.2. Assume that du > 0, ū < α, and (3.19) hold. If ā11/du ∈ (µq, µq+1) for some q ∈ N
and

∑q
i=1 m(µi) is odd, then there is a positive constant d̃v such that for any dv > d̃v, (4.1) has at least

one nonconstant positive solution.

Proof. It follows from (4.9) and ā11/du ∈ (µq, µq+1) that there exists a sufficient large d0 such that for
any dv > d0

0 < µ−(du, dv) < µ1, µq < µ+(du, dv) < µq+1. (4.10)

From Theorem 4.1, system (4.1) has no nonconstant positive solution for any du, dv > d̂. We choose
d̃u > d̂ such that ā11/d̃u < µ1 and d̃v > max{d̂, d0} such that

0 < µ−(d̃u, d̃v) < µ+(d̃u, d̃v) < µ1. (4.11)

Assume that the conclusion of Theorem 4.2 is not true. Then there is some dv such that system (4.1)
has no nonconstant positive solution for dv ≥ d̃v. For κ ∈ [0, 1], we let Dκ = diag(κdu + (1 − κ)d̃u, κdv +

(1 − κ)d̃v) and consider the following system−Dκ4U = G(U), x ∈ Ω,

∂νU = 0, x ∈ ∂Ω,
(4.12)

where G(U) is defined in (4.7). Obviously, (4.12) is equivalent to

Φ(U, κ) = U − (I − 4)−1
{
D−1
κ G(U) + U

}
= 0, U ∈ X.

Note that Φ(U, 1) = F(du, dv,U), Φ(U, 0) = F(d̃u, d̃v,U) and

FU(du, dv, ū, v̄) = I − (I − 4)−1
{
diag(du, dv)−1GU(ū, v̄) + I

}
= 0,

FU(d̃u, d̃v, ū, v̄) = I − (I − 4)−1
{
diag(d̃u, d̃v)−1GU(ū, v̄) + I

}
= 0.

The above arguments show that Φ(U, 1) = 0 and Φ(U, 0) = 0 have no nonconstant positive solution.
From (4.10) and (4.11), we have

W(du, dv) ∩ Λ = {µ1, µ2, · · · , µq}, W(d̃u, d̃v) ∩ Λ = ∅,

which imply that

index (Φ(·, 1), (ū, v̄)) = (−1)
∑q

i=1 m(µi) = −1, index (Φ(·, 0), (ū, v̄)) = (−1)0 = 1.

By using Lemmas 4.2 and 4.4, we obtain (u, v) ∈ Θ for any solution (u, v) of system (4.1) on Ω̄. Then
Φ(U, κ) , 0 on ∂Θ for all κ ∈ [0, 1]. It follows from the homotony invariance of Leray-Schauder degree
that

deg(Φ(·, 0),Θ, 0) = deg(Φ(·, 1),Θ, 0). (4.13)

Note that Φ(U, 0) = 0 and Φ(U, 1) = 0 have only the constant solution (ū, v̄) in Θ and hence,

deg(Φ(·, 0),Θ, 0) = index (Φ(·, 0), (ū, v̄)) = 1,
deg(Φ(·, 1),Θ, 0) = index (Φ(·, 1), (ū, v̄)) = −1,

which is a contradiction to (4.13). The proof is complete.
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5. Influence of prey refuge and predator cannibalism on biomass

The predator and prey biomass density in an ecosystem is an important index for avoiding
population extinction and protecting biological diversity. In this section, we will investigate the
influence of prey refuge and predator cannibalism in (1.1) on predator and prey biomass density. To
facilitate the discussion below, we let Ω = [0, 40] and use the spatial average of u(x, t) and v(x, t)
defined as

U(t) =
1

40

∫ 40

0
u(t, x)dx, V(t) =

1
40

∫ 40

0
v(t, x)dx.

We consider the effect of predator cannibalism rate η. In Figure 4, we compare the (spatial averaged)
coexistence constant or nonconstant steady states (U,V) for different values η. From Figure 4 left panel,
one can observe that prey biomass density is increasing gradually with the increase of η. This shows
that predator cannibalism is beneficial to prey biomass density. From Figure 4 right panel, there exists
a η∗ such that predator biomass density is increasing gradually when 0.125 < η < η∗, and decreasing
gradually when η > η∗. This confirms that appropriate predator cannibalism (η = η∗) has a positive
effect on predator biomass density, and then high predator cannibalism has a negative effect on predator
biomass density.

When predator cannibalism is low (η = 0.08), Figure 5 shows that system (1.1) can produce Hopf
bifurcation which destroys the temporal symmetry and induces periodic oscillations that are uniform
in space and periodic in time for carrying capacity K = 10 of prey. But when predator cannibalism
is high, predator and prey biomass density converge to a positive constant steady state (see Figure 2).
These indicate that high predator cannibalism may stabilize the predator-prey system, and prevent the
paradox of enrichment.

Prey refuge is an effective strategy for protecting prey population and avoiding over-predation.
Figure 6 shows that prey refuge has a beneficial influence on prey biomass density, and a negative
influence on predator biomass density. From the perspective of biodiversity conservation, prey refuge
in point has a better effect for maintaining the persistence of predator-prey system (see Theorems 2.2
and 2.3). Excessive or low prey refuge is likely to destroy the balance of ecosystems.
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Figure 4. Influence of predator cannibalism rate η on predator and prey biomass density.
Here parameters are from Table 2 and 0.125 < η < 0.5. Left panel: steady state U of prey
biomass density; Right panel: steady state V of predator biomass density.
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Figure 5. Spatially homogeneous periodic orbits. Here η = 0.08,m = 0.06,Ω = [0, 40] and
other parameters are from Table 2.
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Figure 6. Influence of prey refuge rate c on predator and prey biomass density. Here
parameters are from Table 2 and 0 < c < 0.9. Left panel: steady state U of prey biomass
density; Right panel: steady state V of predator biomass density.

6. Discussion

In this paper, we analyze a diffusive predator-prey system (1.1) with prey refuge and predator
cannibalism. We now roughly summarize our main results as below: (1) system (1.1) is dissipation
and persistence (see Theorems 2.2 and 2.3); (2) the existence, local and global stability of constant
steady states are established (see Theorems 3.2, 3.3, 3.4 and 3.5); Turing instability caused by
diffusion is given (see Theorem 3.6); (3) the nonexistence and existence of nonconstant steady state
solutions is investigated (see Theorems 4.1 and 4.2); (4) Studies show that appropriate predator
cannibalism has a positive effect on predator-prey ecosystem (see Figure 4).

We do some theoretical analysis to explore threshold conditions for the regime shift from extinction
to coexistence of predator and prey. Our results show that the total extinction of predator and prey
will never occur, but this can happen ecologically even though the equilibrium at the origin E0 is
unstable. This is because that organisms are discrete and can be completely eliminated when the
densities become very small. If m > e1aK(1 − c)/(h + K(1 − c)), then predator is extinct and prey
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reaches its maximum environmental capacity. The above condition also shows that the possibility of
predator extinction increases with the gradual increase of prey refuge ratio. This means that excessive
prey refuge has a negative effect on predator-prey system, and is also not conducive to biodiversity
conservation. Predator and prey can coexist together in three different forms: constant steady state:
nonconstant steady state; periodic oscillations in time or space.

In previous studies, it has been widely believed that predator cannibalism has a negative effect on
predator biomass density. However, our studies point out that appropriate predator cannibalism can
not only increase prey biomass density, but also enhance predator biomass density under the right
circumstance. From the ecological point of view, the reason why this can happen is that appropriate
predator cannibalism can moderately reduce predator pressure of prey and enhance prey biomass
density that leads to an increase in predator biomass density. On the other hand, it is worth noting that
high predator cannibalism may stabilize the predator-prey system, and prevent the paradox of
enrichment. This is because that high predator cannibalism increases intraspecific competition among
predators, and then reduces the possibility of population oscillation. Results above indicate
appropriate predator cannibalism has a positive effect on predator-prey ecosystem.

Figure 7. Influence of diffusion coefficients du, dv on predator and prey oscillation. Here
η = 0.08,m = 0.06,Ω = [0, 40] and other parameters are from Table 2. Upper panel:
du = 0.001, dv = 0.1; Lower panel: du = 100, dv = 0.1

Spatial environmental parameters du, dv have an important influence on dynamical properties of
system (1.1). If diffusion coefficients du, dv are sufficiently large, then predator and prey are evenly
distributed in space. By contrast, when du is very low for a fixed dv, E2 loses its stability and Turing
instability occurs. This produces a steady state solution of spatial inhomogeneity called the pattern
formation. This implies that spatial distribution patterns and dispersal mechanisms can make predator-
prey system exhibit more complex dynamical properties. Our numerical simulations also show that

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1445–1470.



1468

diffusion coefficients du, dv have no significant effect on predator and prey oscillation. By comparing
Figure 7 and Figure 5, when du takes three different values: 0.001, 0.1 and 100 for a fixed dv = 0.1, there
is no obvious change in the period and amplitude with time for predator and prey biomass density. This
indicates that diffusion coefficients do not have a fundamental impact on the paradox of enrichment in
system (1.1).

This paper attempts to investigate dynamics of system (1.1) and the influence of prey refuge and
predator cannibalism. It is important to understand the existence and stability of Hopf bifurcation when
predator cannibalism rate η changes, which are not discussed in this paper. In view of the important
role of Allee effects or time delay in the predator-prey system, it will be of interest to further model
dynamic properties of system (1.1) with Allee effects or time delay.
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