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Abstract. The mathematical theory of single outbreak epidemic models re-
ally began with the work of Kermack and Mackendrick about 8 decades ago.
This gave a simple answer to the long-standing question of why epidemics
woould appear suddenly and then disappear just as suddenly without having
infected an entire population. Therefore it seemed natural to expect that the-
oreticians would immediately proceed to expand this mathematical framework
both because the need to handle recurrent single infectious disease outbreaks
has always been a priority for public health officials and because theoreticians
often try to push the limits of exiting theories. However, the expansion of the
theory via the inclusion of refined epidemiological classifications or through the
incorporation of categories that are essential for the evaluation of intervention
strategies, in the context of ongoing epidemic outbreaks, did not materialize.
It was the global threat posed by SARS in 2003 that caused theoreticians to
expand the Kermack-McKendrick single-outbreak framework. Most recently,
efforts to connect theoretical work to data have exploded as attempts to deal
with the threat of emergent and re-emergent diseases including the most recent
H1N1 influenza pandemic, have marched to the forefront of our global priorities.
Since data are collected and/or reported over discrete units of time, developing
single outbreak models that fit collected data naturally is relevant. In this note,
we introduce a discrete-epidemic framework and highlight, through our anal-
yses, the similarities between single-outbreak comparable classical continuous-

time epidemic models and the discrete-time models introduced in this note.
The emphasis is on comparisons driven by expressions for the final epidemic
size.
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1. Introduction. The study of compartmental epidemic models, in the context
of single-epidemic outbreaks, began with the work of Kermack and McKendrick
[23]. Traditionally, mathematical epidemiology has been driven by a continuous-
time perspective in deterministic or stochastic settings [2, 5, 7, 10, 20]. Kermack
and McKendrick formulated their single-outbreak epidemic model in terms of age
of infection, and established a final size relation. Applications or generalizations of
Kermack and McKendrick’s work were not carried out systematically for decades.
Efforts to understand, manage and predict the impact of the 2003 SARS epidemic
[14, 19, 28] also generated additional theoretical work on single epidemic outbreak
models [9]. The analytical emphasis, as in the original work of Kermack and McK-
endrick, has been on the computation of expressions for the final epidemic size.
Computation of a general expression for the final size relation, in the context of mul-
tiple modeling frameworks, requires computation of the basic reproduction number.
Some aids for this computation can be found in [9, 15, 27, 29].

Most of the models studied have been continuous in part because these are more
tractable mathematically. A good reason for studying discrete models is that data
are collected at discrete times and hence it may be easier to compare data with the
output of a discrete model. Furthermore, the numerical exploration of discrete-time
epidemic models is rather straightforward and therefore can be easily implemented
by non-mathematicians, an advantage in the public health world. There has been
some study of discrete disease transmission models with births and natural deaths
[1, 3, 4, 11, 12, 13, 24], but to our knowledge the only discrete epidemic study is [30].
The overall goal of this note is to contrast in setting of epidemiological interest the
methods and approaches used to compute the final epidemic relation in continuous
and discrete-time settings. The age of infection approach does not lend itself to
discrete models but it is possible to give discrete versions of staged progression
and differential infectivity epidemic models as well. Hence, the specific purpose of
this note is twofold, namely, to extend the calculation of the basic reproduction
number and the final size of an epidemic to general continuous staged progression
and differential infectivity models for both discrete and continuous time models
[21, 22]. We develop this theory, showing how to calculate the basic reproduction
number and the final size of an epidemic. We assume throughout that there are
no disease, deaths, so that the total population size remains constant.When disease
deaths are significant then the final size relation is given by an inequality, that is,
we can not be calculate the final size of an epidemic exactly. However, if the disease
death rate is small, the final size relation is an approximate equality, and may be
used to obtain good estimates of the final size.

The rest of this paper is organized as follows: Section 2 focuses on the study of
continuous staged-progression, single outbreak, epidemic models, with the primary
result being the computation of the final size relationship; the impact of treatment,
at multiple levels, in the context of the model of Section 2 is explored and a final
size relation is computed in terms of the ⁀control reproductive number in Section 3;
Section 4 introduces a discrete-time epidemic model, that includes discrete stage
progression, and computes the final epidemic size relation as a function of the basic
reproductive number; Section 5 focuses on treatment and the computation of a final
size relationship as a function of the control reproductive number; In Section 6, we
collect some observations and conclusions.



DISCRETE EPIDEMIC MODELS 3

2. The continuous staged progression epidemic. We consider an epidemic
with progression from S through k infected stages I1, I2, · · · , Ik. We assume that
in stage i the relative infectivity is εi, the distribution of stay in the stage is given
by Pi with Pi(0) = 1,

∫

∞

0 P (t)dt < ∞, and Pi monotone non-decreasing. There are
no disease deaths and the total population size N is constant. We assume initial
conditions

S(0) = 0, I1(0) = I0, I2(0) = I3(0) = · · · = Ik(0) = 0.

The total infectivity is given by

ϕ(t) =

k
∑

i=1

εiIi(t),

and

S′(t) = −βS(t)ϕ(t). (1)

We let Bi(t) denote the input to stage i at time t, so that

Ii(t) =

∫ t

0

Bi(s)Pi(t − s)ds, i = 2, 3, · · · , k. (2)

Then

I ′i(t) = Bi(t) +

∫ t

0

Bi(s)P
′

i (t − s)ds,

and this implies

Bi+1(t) = −

∫ t

0

Bi(s)P
′

i (t − s)ds,

from which we calculate
∫

∞

0

Bi+1(t)dt = −

∫

∞

0

∫ t

0

Bi(s)P
′

i (t − s)dsdt

=

∫

∞

0

Bi(s)

∫

∞

s

Bi(s)P
′

i (t − s)dtds

=

∫

∞

0

Bi(s)ds, i = 2, 3, · · · , k.

Next,

I1(t) = I0P1(t) +

∫ t

0

[−S′(s)]P1(t − s)ds. (3)

The epidemic model consists of the equations (1), (2), and (3).
Differentiation of (3) gives

I ′1(t) = I0P
′

1(t) − S′(t) +

∫ t

0

[−S′(s)]P ′

1(t − s)ds,

and the input B2(t) to stage 2 is

−I0P
′

1(t) −

∫ t

0

[−S′(s)]P ′

1(t − s)ds.
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Thus
∫

∞

0

B2(t)dt = I0 −

∫

∞

0

∫ t

0

[−S′(s)]p′1(t − s)dsdt

= I0 −

∫

∞

0

[−S′(s)]

∫

∞

s

P ′

1(t − s)dtds

= I0 + S0 − S∞ = N − S∞.

We now see that
∫

∞

0

Bi(s)ds = N − S∞, i = 2, 3, · · · , k.

Integration of (2) gives
∫

∞

0

Ii(t)dt =

∫

∞

0

∫ t

0

Bi(s)Pi(t − s)dsdt

=

∫

∞

0

Bi(s)

∫

∞

s

Pi(t − s)dtds (4)

= (N − S∞)

∫

∞

0

Pi(u)du.

Integration of (3) gives
∫

∞

0

I1(t) = I0

∫

∞

0

P1(t)dt +

∫

∞

0

∫ t

0

[−S′(s)]P1(t − s)dsdt

= I0

∫

∞

0

P1(t)dt + [S0 − S∞]

∫

∞

0

P1(t)dt (5)

= [N − S∞]

∫

∞

0

P1(t)dt.

Combining (2) and (3) we have
∫

∞

0

Ii(t)dt = [N − S∞]

∫

∞

0

Pi(t)dt, i = 1, 2, · · · , k.

Integration of (1) gives

ln
S0

S∞

= β

∫

∞

0

ϕ(t)dt

= β

n
∑

i=1

εi

∫

∞

0

Ii(t)dt

= β[N − S∞]

k
∑

i=1

εi

∫

∞

0

Pi(t)dt.

Since

R0 = βN

k
∑

i=1

εi

∫

∞

0

Pi(t)dt,

this takes the familiar final size relation form

ln
S0

S∞

= R0

[

1 −
S∞

N

]

. (6)
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3. Treatment models. We consider two alternatives for treatment. The first is
treatment at the beginning of a stage, with a specified fraction of individuals enter-
ing the stage being selected for treatment and moving to a treatment compartment.
The second is treatment throughout a stage, with a rate of transfer from the un-
treated compartment to a treatment compartment.

3.1. Treatment at the beginning of a stage. To the model given by (1), (2),
(3) we add treatment at the beginning of each stage. By this, we mean that a
fraction p1 of members of S who are infected go to a treatment compartment T1

while the remaining fraction q1 of newly infected members go to I1. There is a
sequence T1, T2, · · · , Tn of treated compartments with relative infectivity δi and
period distribution Qi in Ti. Treated members continue through the treatment
stages. In addition, of the members leaving an infected stage Ii, a fraction pi enters
treatment in Ti+1 while the remaining fraction qi continues to Ii+1. We let mi

denote the fraction of infected members who go through the stage Ii and ni the
fraction of infected members who go through the stage Ti. Then

m1 = q1, m2 = q1q2, · · · , mk = q1q2 · · · qk (7)

n1 = p1, p2 = p1 + q1p2, · · · , nk = p1 + q1p2 + · · · + q1q2 · · · qk−1pk.

The total infectivity is now

ϕ(t) =
k

∑

i=1

[εiIi(t) + δ1Ti(t)],

and we have
∫

∞

0

Ii(t)dt = mi(N − S∞)

∫

∞

0

Pi(u)du (8)

∫

∞

0

Ti(t)dt = ni(N − S∞)

∫

∞

0

Qi(u)du,

so that

Rc = βN

k
∑

i=1

[miεi

∫

∞

0

Pi(t)dt + niδi

∫

∞

0

Qi(t)dt].

We use Rc in place of R0 to indicate that this is a control reproduction number.
The final size relation takes the expected form

ln
S0

S∞

= Rc

[

1 −
S∞

N

]

. (9)

The calculation of the control reproduction number takes a simpler form if treat-
ment takes place in only one stage, say at the beginning of stage j. Then p1 = 0 if
i 6= j, and

mi = 1, (i < j), mi = 1 − pj, (i ≥ j)

ni = 0, (i < j), ni = qj−1pj, (i ≥ j).

It would be more realistic to consider a model in which members are moved from
an infective class Ii to a treated class Ti rather than being designated for treatment
at the beginning of the stageIi. However, the mathematical analysis of this situation
is more complicated.
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3.2. Treatment throughout a stage. We now model treatment by moving mem-
bers from Ii at proportional rate γi to a treatment compartment Ti with relative
infectivity δi and duration distribution Qi. We let Ci(s) denote the input to the
treatment stage Ti at time s; this input includes output from the previous treatment
stage Ti−1 if i > 1 as well as the input from Ii. Thus, we replace the model (1),
(2), (3) by a new model containing S, Ii, Ti. The total infectivity is now given by

ϕ(t) =
k

∑

i=1

[εiIi(t) + δiTi(t)].

The equation (1) is unchanged, but now

I1(t) = I0P1e
−γ1t) +

∫ t

0

[−S′(s)]P1(t − s)e−γ1(t−s)ds. (10)

Differentiation of (10) gives

I ′1(t) = I0P
′

1(t)e
−γ1t − S′(t) − γ1I1(t) +

∫ t

0

[−S′(s)]P ′

1(t − s)e−γ1(t−s)ds,

and the input B2(t) to stage 2 is

−I0P
′

1(t)e
−γ1t −

∫ t

0

[−S′(s)]P ′

1(t − s)e−γ1(t−s)ds.

With the aid of integration by parts, we see that
∫

∞

0

B2(t)dt = I0[1 − γ1

∫

∞

0

P1(t)e
−γ1tdt] + (S0 − S∞)[1 − γ1

∫

∞

0

P1(t)e
−γ1tdt]

= [N − S∞][1 − γ1

∫

∞

0

P1(t)e
−γ1tdt]. (11)

In place of (2) we now have

Ii(t) =

∫ t

0

Bi(s)Pi(t − s)e−γi(t−s)ds, i = 2, 3, · · · , k. (12)

Then

I ′i(t) = Bi(t) − γiIi(t) +

∫ t

0

Bi(s)P
′

i (t − s)e−γi(t−s)ds,

and this implies

Bi+1(t) = −

∫ t

0

Bi(s)P
′

i (t − s)e−γi(t−s)ds,

from which we calculate
∫

∞

0

Bi+1(t)dt = −

∫

∞

0

∫ t

0

Bi(s)P
′

i (t − s)e−γi(t−s)dsdt

=

∫

∞

0

Bi(s)

∫

∞

s

Bi(s)P
′

i (t − s)e−γi(t−s)dtds

=

∫

∞

0

Bi(s)ds

∫

∞

0

P ′

i (u)e−γiudu

=

∫

∞

0

Bi(s)ds[1 − γi

∫

∞

0

Pi(u)e−γiudu], i = 2, 3, · · · , k.
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Integration by parts gives

−

∫

∞

0

P ′

i (u)e−γiudu = 1 − γi

∫

∞

0

Pi(u)e−γiudu,

and we define

Γi = 1 − γi

∫

∞

0

Pi(u)e−γiudu,

so that
∫

∞

0

Bi+1(t)dt = Γi

∫

∞

0

Bi(s)ds.

Using (11) we see by induction that
∫

∞

0

Bi(t)dt = Γi−1Γi−2 · · ·Γ1(N − S∞). (13)

The equation

I1(t) = I0e
−γ1tP1(t) +

∫ t

0

[−S′(s)]P1(t − s)e−γ1(t−s)ds

leads to
∫

∞

0

I1(t)dt = [N − S∞]

∫

∞

0

P1(t)e
−γ1tdt.

A similar calculation leads to
∫

∞

0

Ii(t)dt =

∫

∞

0

Bi(t)dt

∫

∞

0

e−γitPi(t)dt, (i ≥ 2).

Because of (13) we have
∫

∞

0

Ii(t)dt =

∫

∞

0

e−γitPi(t)dt · Γi−1Γi−2 · · ·Γ1[N − S∞], (i ≥ 2). (14)

Next, we write

Ti(t) =

∫ t

0

Ci(s)Qi(t − s)ds. (15)

The epidemic model consists of the equations (1), (10), (12), and (15).
Differentiation gives

T ′

i (t) = Ci(t) +

∫ t

0

Ci(s)Q
′

i(t − s)ds.

The output from Ti to Ti+1 at time t is −
∫ t

0 Ci(s)Q
′

i(t − s)ds and thus

C1(t) = γ1I1(t)

Ci+1(t) = γi+1Ii+1(t) −

∫ t

0

Ci(s)Q
′

i(t − s)ds, i > 1.

Thus
∫

∞

0

C1(t) = γ1

∫

∞

0

I1(t)dt = γ1Γ1[N − S∞]

∫

∞

0

Ci+1(t)dt = γi+1

∫

∞

0

Ii+1(t)dt −

∫

∞

0

∫ t

0

Ci(s)Q
′

i(t − s)dsdt

= γi+1

∫

∞

0

Ii+1(t)dt +

∫

∞

0

Ci(s)ds,

= γi+1Γi+1Γi · · ·Γ1[N − S∞] +

∫

∞

0

Ci(s)ds, (i > 0).
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We now obtain
∫

∞

0

Ti(t)dt =

∫

∞

0

Ci(s)Qi(t − s)dsdt

=

∫

∞

0

Ci(s)ds

∫

∞

0

Qi(u)du

= [N − S∞]

∫

∞

0

Qi(u)du[γiΓiΓi−1 + · · · + γ1Γ1].

It is convenient to write

Λi = γiΓiΓi−1 · · ·Γ1 + γi−1Γi−1 · · ·Γ1 + · · · + γ1Γ1],

so that
∫

∞

0

Ti(t)dt = Λi

∫

∞

0

Qi(u)du[N − S∞]. (16)

Combination of (14) and (16) gives the control reproduction number

Rc = βN

k
∑

i=1

[

εiΓi−1Γi−2 · · ·Γ1

∫

∞

0

e−γitPi(t)dt + δiΛi

∫

∞

0

Qi(t)dt

]

, (17)

and the same final size relation (9).
The results take a much simpler form if treatment is confined to a single stage.

Suppose that γi = 0 if i 6= j. Then Γi = 1 if i 6= j and
∫

∞

0

Ii(t)dt = [N − S∞], (i < j),

∫

∞

0

Ii(t)dt = Γj [N − S∞], (i ≥ j) (18)

∫

∞

0

Ti(t)dt = 0, (i < j),

∫

∞

0

Tj(t)dt = γjΓj

∫

∞

0

Qi(t)dt[N − S∞], (i ≥ j).

This leads to

Rc = βN

j−1
∑

i=1

[

εi

∫

∞

0

Pi(t)dt +
∑

i=j

[

εiΓj

∫

∞

0

e−γitPi(t)dt + δiγjΓj

∫

∞

0

Qi(t)dt

]

.

4. Discrete epidemic models. We begin with the simplest discrete epidemic
model, the discrete analogue of the simple continuous epidemic model

S′ = −βSI

I ′ = βSI − αI.

We define the function

G(S, I) = e−βI ,

and let

Gk = G(Sk, Ik).

The discrete model is

Sk+1 = SkGk (19)

Ik+1 = Sk[1 − Gk] + σIk.

In this model Gk is the fraction of susceptibles at stage k who remain susceptible to
stage (k + 1), and σ is the fraction of infectives at each stage who remain infective
to the next stage. It is clear that

0 ≤ Gk ≤ 1, 0 ≤ σ ≤ 1.
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Since Gk ≤ 1, Sk is a decreasing sequence and has a limit S∞ ≥ 0 as t → ∞. Since
σ ≤ 1, Sk+1 + Ik+1 is a decreasing sequence and has a limit S∞ + I∞ as t → ∞.
Also, the difference of successive terms in this sequence −(1 − σ)Ik tends to zero,
and this shows that I∞ = 0.

In order to show, as for the continuous epidemic model, that S∞ > 0, we proceed
as follows. It is easy to show by induction that

Sk+1 = S0G0G1 · · ·Gk (20)

ln
Sk+1

S0
=

k
∑

j=0

Gj .

Because ln Gj = −βIj , this gives

ln
S0

Sk+1
= β

k
∑

j=0

Ij .

We let k → ∞, and

ln
S0

S∞

= β

∞
∑

j=0

Ij . (21)

From (19) we have
Sk − Sk+1 = Ik+1 − σIk,

and summing over k we have

S0 − S∞ = (1 − σ)

∞
∑

j=0

Ij − I0. (22)

Using N = S0 + I0 and combining (21) and (22), we have

ln
S0

S∞

=
βN

1 − σ

[

1 −
S∞

N

]

.

Because the mean infective period is

1 + σ + σ2 + · · · =
1

1 − σ
,

the basic reproduction number is

R0 =
βN

1 − σ
,

the final size relation becomes

ln
S0

S∞

= R0

[

1 −
S∞

N

]

. (23)

4.1. The discrete staged progression epidemic. Let I
(i)
j denote the fraction

of infected in stage i (i = 1, 2, · · · , k) at time j. We assume initial conditions

I
(1)
0 = I0, I

(2)
0 = I

(3)
0 = · · · = I

(k)
0 = 0, S0 + I0 = N.

Consider the system

Sj+1 = SjGj

I
(1)
j+1 = Sj(1 − Gj) + σ1I

(1)
j

I
(i)
j+1 = (1 − σi−1)I

(i−1)
j + σiI

(i)
j , i = 2, · · · , k, j ≥ 0,

(24)
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where

Gj = e−β
∑

k
i=1 ǫiI

(i)
j . (25)

From the S equation in (24) we have

Sn+1 = SnGn = Sn−1Gn−1Gn = · · · = S0

n
∏

j=1

Gj .

Thus,

lnSn+1 = lnS0 +
n

∑

j=1

ln Gj . (26)

From (25) we have

n
∑

j=1

lnGj = −β

n
∑

j=1

k
∑

i=1

ǫiI
(i)
j

= −β

k
∑

i=1

ǫi

n
∑

j=1

I
(i)
j .

(27)

Thus, (26) can be written as

lnSn+1 = lnS0 − β

k
∑

i=1

ǫi

n
∑

j=1

I
(i)
j .

We let n → ∞ and obtain

ln
S0

S∞

= β

k
∑

i=1

ǫi

∞
∑

j=1

I
(i)
j . (28)

From the I(1) equation in (24) and using SjGj = Sj+1, we have

I
(1)
j+1 − σ1I

(1)
j = Sj − Sj+1,

and taking summation on both sides:

n
∑

j=0

I
(1)
j+1 − σ1

n
∑

j=0

I
(1)
j =

n
∑

j=0

Sj −

n
∑

j=0

Sj+1,

⇒

I
(1)
n+1 +

n
∑

j=0

I
(1)
j − I0 − σ1

n
∑

j=0

I
(1)
j =

n
∑

j=0

Sj −

n
∑

j=0

Sj − Sn+1 + S0.

Assume that I
(1)
n+1 → 0 as n → ∞. Taking the limit n → ∞ in the above equation

and using S0 + I0 = Nwe have

(1 − σ1)

∞
∑

j=0

I
(1)
j = N − S∞,

or
∞
∑

j=0

I
(1)
j =

1

1 − σ1

(

N − S∞

)

. (29)
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Using the I(i) equation in (24) for i ≥ 2, and noticing that I
(i)
0 = 0, we can get

(

1 − σi

)

∞
∑

j=0

I
(i)
j =

(

1 − σi−1

)

∞
∑

j=0

I
(i−1)
j , i ≥ 2. (30)

From (29) and (30) we have

∞
∑

j=0

I
(i)
j =

1

1 − σi

(

N − S∞

)

, i ≥ 1. (31)

Substituting (31) into (28) we get

ln
S0

S∞

= β

k
∑

i=1

ǫi(N − S∞)

1 − σi

.

Since the reproduction number is

R0 = β

k
∑

i=1

ǫiN

1 − σi

, (32)

we obtain

ln
S0

S∞

= R0

[

1 −
S∞

N

]

. (33)

5. Discrete treatment models. For discrete epidemic models we think of events
occurring only at discrete times, and the selection of members for treatment occurs
only at the beginning of a stage.

Let I
(i)
j and T

(i)
j denote the numbers of infected and treated, individuals respec-

tively, in stage i (i = 1, 2, · · · , k) at time j. Let σI
i denote the probability that an

infected individual in the I(i) stage continues on to the next stage, either treated
or untreated, and let σT

i denote the probability that an individual in the T (i) stage
continues on to the next treated stage.

In addition, as in the continuous case, of the members leaving an infected stage

I
(i)
j , a fraction pi enters treatment in T

(i+1)
j+1 while the remaining fraction qi continues

to Ii+1. We let mi denote the fraction of infected members who go through the
stage Ii and ni the fraction of infected members who go through the stage Ti. Then,
as in the continuous case,

m1 = q1, m2 = q1q2, · · · , mk = q1q2 · · · qk (34)

n1 = p1, p2 = p1 + q1p2, · · · , nk = p1 + q1p2 + · · · + q1q2 · · · qk−1pk.

We use initial conditions

I
(1)
0 (0) = q1I0, T

(1)
0 (0) = p1I0, I

(i)
0 (0) = T

(i)
0 (0) = 0, i ≥ 2, S0 + I0 = N.
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The treatment system is

Sj+1 = SjGj ,

I
(1)
j+1 = q1Sj(1 − Gj) + σI

1I
(1)
j ,

T
(1)
j+1 = p1Sj(1 − Gj) + σT

1 T
(1)
j ,

I
(i)
j+1 = qi(1 − σI

i−1)I
(i−1)
j + σI

i ηiI
(i)
j ,

T
(i)
j+1 = pi(1 − σI

i−1)I
(i−1)
j + (1 − σT

i−1)T
(i−1)
j + σT

i T
(i)
j ,

i = 2, · · · , k, j ≥ 0,

(35)

with

Gj = e−β
∑

k
i=1

(

ǫiI
(i)
j

+δiT
(i)
j

)

.

From the S equation in (35) and similarly to the case of no treatment we can
obtain

ln
S0

S∞

= β

k
∑

i=1

(

ǫi

∞
∑

j=1

I
(i)
j + δi

∞
∑

j=1

T
(i)
j

)

. (36)

Using the I(1) equation in (35) we have (assuming again that I
(i)
n → 0 as n → ∞)

(1 − σI
1)

∞
∑

j=0

I
(1)
j = q1

(

N − S∞

)

. (37)

Using the I(i) equation in (35) we have

(1 − σI
i )

∞
∑

j=0

I
(i)
j = qi

(

1 − σI
i−1

)

∞
∑

j=0

I
(i−1)
j , i ≥ 2,

which leads to

(1 − σI
i )

∞
∑

j=0

I
(i)
j = qiqi−1 · · · q2(1 − σI

1)

∞
∑

j=0

I
(1)
j , i ≥ 2. (38)

Using (37) and mi = qiqi−1 · · · q1 (with m0 = 1) we rewrite (38) as

(1 − σI
i )

∞
∑

j=0

I
(i)
j = mi(N − S∞), i ≥ 2. (39)

Using the T (1) equation in (35) we have

(1 − σT
1 )

∞
∑

j=0

T
(1)
j = p1(N − S∞). (40)

Using the T (i) equation in (35) we have

(1 − σT
i )

∞
∑

j=0

T
(i)
j = (1 − σT

i−1)
∞
∑

j=0

T
(i−1)
j + pi(1 − σI

i−1)
∞
∑

j=0

I
(i−1)
j , i ≥ 2,
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which leads to

(1 − σT
i )

∞
∑

j=0

T
(i)
j = (1 − σT

i−2)
∞
∑

j=0

T
(i−2)
j + pi−1(1 − σI

i−2)
∞
∑

j=0

I
(i−2)
j

+pi(1 − σI
i−1)

∞
∑

j=0

I
(i−1)
j

= · · · · · ·

= (1 − σT
1 )

∞
∑

j=0

T
(1)
j +

i
∑

l=2

[

pl(1 − σI
l−1)

∞
∑

j=0

I
(l−1)
j

]

(from (39), (40)) = p1(N − S∞) +

i
∑

l=2

[

plml−1(N − S∞)
]

=
(

N − S∞

)

i
∑

l=1

plml−1, i ≥ 2.

Thus, using ni =
∑i

l=1 plml−1 we have

∞
∑

j=0

T
(i)
j =

ni(N − S∞)

1 − σT
i

, i ≥ 2. (41)

Substituting (39) and (41) into (36) we get

ln
S0

S∞

= β

k
∑

i=1

[ ǫimi

1 − σI
i

+
δini

1 − σT
i

]

(

N − S∞

)

. (42)

Let

Rc = βN

k
∑

i=1

[ ǫimi

1 − σI
i

+
δini

1 − σT
i

]

, (43)

then the equation (42) becomes

ln
S0

S∞

= Rc

[

1 −
S∞

N

]

. (44)

The calculation of the control reproduction number takes a simpler form if treat-
ment takes place in only one stage, say at the beginning of stage j. Then p1 = 0 if
i 6= j, and

mi = 1, (i < j), mi = 1 − pj, (i ≥ j)

ni = 0, (i < j), ni = qj−1pj, (i ≥ j).

6. Conclusions. The SARS epidemic of 2003 brought to our attention the impor-
tance of developing theory that would allow us to test the impact of intervention
policies in the context of single-epidemic outbreaks. Theoreticians had been ‘dis-
tracted’ from this important task putting emphasis on the study of the long-term
(asymptotic) dynamics of epidemic models (models that include vital dynamics)
for which there is a rich mathematical theory. Hence, the theoretical emphasis had
been on the study of endemic behavior or on the identification of mechanisms that
would generate ‘non-typical’ long-term dynamics, like oscillations. Furthermore,
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the exploration of the impact of control measures had as its driving goal the elim-
ination or eradication of a disease via long-term policies that focus primarily on
the evaluation of vaccination or education long-term policies [20]. The SARS epi-
demic [14, 19, 28], fears of the avian flu [6, 16, 17, 18, 25, 26] and the most recent
H1N1 pandemic have brought to the forefront the importance of having a theory
that allow us for the exploration of measures that can contain, in real time, single
epidemic outbreaks [6, 8, 16, 17, 18, 25, 26]

In this note, we present elements of this theory in the context of discrete and
continuous-time single outbreak models with some degree of epidemiological het-
erogeneity. Specifically, we have extended the simple continuous epidemic model to
include staged progression models and have developed the analogous results for dis-
crete epidemic models. The basic results on reproduction numbers have analogues
for discrete models, and the final size relations discrete models for discrete mod-
els are identical to those for continuous models. However, important and obvious
challenges remain. The most critical has to do with finding a theory that man-
ages to deal with single epidemic outbreaks in the context of meta-populations. In
other words, dealing with realistic levels of heterogeneity, particularly those driven
by the movement of people between different environments or communities or in-
corporating the role of behavior in single-outbreak models has yet to be carried
out.
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