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Abstract: This paper compares three evolved controllers including, an evolvable hardware controller, 

an artificial neural network and a lookup table. The comparison made between these controllers 

looks at relative evolutionary efficiency, controller performance and scalability. The controllers were 

evolved for three navigational behaviours including light following, obstacle avoidance, and the 

combined behaviours of light following while avoiding obstacles. Both monolithic and subsumption 

techniques were used to evolve the combined behaviours to evaluate scalability. It was found that all 

three evolved controllers performed the assigned tasks equally well. The evolutionary efficiency and 

scalability of the evolvable hardware and artificial neural network were similar, whereas the lookup 

table had an acceptable result but was subjective to scalability. The virtual-FPGA can be 

implemented in a fault tolerant system using a hybrid FGPAs with a hard-core processor for 

continuous evolution. 
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1. Introduction  

There has been detailed research into evolutionary capable navigational controllers including 

evolvable hardware (EHW), artificial neural networks (ANN), and lookup tables (LUT), but almost 

no research has been performed on how these evolvable robotic controllers compare to each other. 

The motivation for this paper is to compare the EHW controller with an ANN and LUT based robotic 

controller when used for simple navigational tasks, and to suggest the systems in which they could 

best be used.  
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The navigational tasks in this study were limited to light following, obstacle avoidance, and the 

combined tasks of light following while avoiding obstacles. The light following and obstacle 

avoidance navigational tasks were chosen because they have been widely researched, providing a 

benchmark for the comparisons. The combination of light following whilst avoiding obstacles 

provides an excellent method to investigate scalability issues of the controllers. The combined tasks 

were evolved using two methods: a) monolithic evolution [1], where the combined tasks were 

evolved simultaneously; and b) subsumption evolution [2,3], where the tasks were evolved 

separately and then combined using a switching controller, which would override the light following 

controller if an object was detected. These two methods allowed the problems of scalability of the 

controllers to be investigated. 

A comparison is made between these evolvable controllers in three areas: a) the evolutionary 

efficiency, determined by how quickly the controllers can evolve to a satisfactory performance; b) 

the controller performance, determined by both the maximum fitness achieved and physical 

observation of jitter and curvature in the simulated robotic path; and c) the effects of scalability as 

the task is increased.  A standard feed-forward ANN was chosen as it is the smallest network that 

can achieve the required tasks, with an associated small search space. A nine by nine LUT was 

chosen to improve the quantization effects on the input sensors and investigate scalability issues. A 

twenty-bit input was used for the EHW. 

The choice of which is the best evolvable controller to use is dependent on the applications they 

are used in. The recent incorporation of hardcore ARM processors and FPGA architectures within the 

same silicon substrate (including the Altera Cyclone V and Xilinx Zynq series devices), allows the 

use of fault tolerant EHW controllers modified by a continuous evolutionary process running on the 

ARM processor. This enables a single chip EHW robotic controller to be a viable alternative. The 

ANN requires a more powerful processor with a floating-point unit allowing multiplication of the 

weightings in the neurons, thus a 32/64-bit based system is required. The LUT based controllers have 

known limitations in relationship to scalability, however they require no computationally calculation, 

reducing the computer processing overheads. This makes them ideal for low processor power devices 

such as the common 8-bit microcontroller which could be used in a distributed control system. 

One of the future practical applications of this research is the use of EHW in fault tolerant 

robotic controllers. Manufacturers of FPGA devices are now embedding powerful, hardcore ARM 

processors within the device, allowing the evolutionary process to occur in the same silicon 

fabrication as the EHW. The fault tolerant EHW combined with a hardcore processor would use 

continuous evolution, with the best evolved solution updating the active controller. Sensors showing 

changes or faults in the real world are used to update the simulation model allowing the evolving 

controller to be updated, in order to replace the active controller when a change in the real-world 

system occurs (Figure 1). 

 

Figure 1. EHW used in an adaptive fault tolerant system. 
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The genetic algorithm (GA) is an optimization tool that can be used to evolve robotic 

controllers using a process based on biological evolution. The biological chromosome is replaced by 

a chromosome that determines how the robot will operate. The GA operates on a population of these 

chromosomes with three iterative processes: 1) fitness evaluation, where the performance of each 

chromosome is evaluated; 2) selection, where the chromosomes to be kept are determined; and 3) 

reproduction, where the selected chromosomes are combined and mutated to produce new 

chromosomes. The three processes are repeated until a satisfactory solution is found. The 

chromosome for the three controllers are: the configuration bit-stream (CBS) for the EHW; the 

weightings within the ANN and the parameters within the LUT. 

The controllers were evolved on a simulated robot, based on a robot constructed at Auckland 

University of Technology (Figure 2). For motion, the robot had two wheels driven by two DC motors 

providing simplified steering and control. The sensors included: two forward facing light sensors for 

light following, six infrared distance sensors, three facing forward, two to the side and one at the rear 

of the robot for obstacle avoidance and five optical-reflective sensors positioned underneath the 

robot chassis for line following.  

 
Figure 2. The physical two wheeled robot that was designed at the Auckland University 

of Technology for future research in the reality gap between simulation and real world. 

2. Related work 

There has been limited research into comparisons between evolvable robotic controller types. One 

paper was found by Pinter-Bartha et al. [4] comparing two different types of evolvable controllers, the 

ANN with an evolvable Mealy machine whose task was to move towards a light source. It was found 

that the ANN performed better than the Mealy machine. No other comparison of these robotic 

controllers for navigational tasks has been found. The rest of this section researches the use of a genetic 

algorithm to evolvable robotic controllers for light following and obstacle avoidance tasks. 

2.1. Previously evolved robotic controllers 

Valentino Braitenburg [5] was an early instigator of autonomous robotics, relating the actions of 

simple robotic behaviours to that of animal behaviours ranging from foraging (simple light following) 

to more complex fight or flight behaviours.  

2.1.1. Evolvable hardware robotic controllers 

An FPGA consists of a two-dimensional array of programmable logic array blocks (LABs) and 
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programmable interconnections between blocks. Digital circuits are designed using schematics or a 

hardware description language. These are then compiled into a CBS which is downloaded into the 

FPGA to configure the LABs and their interconnections. The CBS can be considered as a 

chromosome and the phenotype of the chromosome is the resultant circuit. Using evolutionary 

computation, the CBS stream can be modified with a standard genetic algorithm, then downloaded 

into the FPGA creating an EHW system.  

The main requirements of EHW are: a) non-destructive architectures that are resistant to a 

destructive CBS; b) scalability, the ability to evolve acceptably as the complexity of the problem 

increases; c) a course-grained architecture to improve the possibility of evolving a high functioning 

circuit and d) partial reconfigurability, where parts of the FPGA can be reconfigured while other 

parts are still running. 

Original research used the Xilinx XC6216 FPGA, which was suitable for evolution as its 

architecture was immune to destructive chromosomes [6,7]. However, this FPGA is no longer 

produced and other EHW methods were developed.  

There are three primary approaches for the use of EHW in robotic controllers: a) genetic 

compilers that are specifically designed to evolve a configuration bit-stream without destructive 

architectures [8,9]; b) Cartesian genetic programming where the hardware descriptive language is 

evolved, and then converted into the bit stream [10]; and c) the virtual-FPGA implemented inside a 

normal FPGA.  

The virtual-FPGA consists of a Cartesian based array of LABs comprised of two parts, a 

multiplexer for input selection, and a logic element (LE) providing a range of selectable logic 

functions. The operation of the LABs are determined by the CBS, thus altering this bit stream would 

change the operation of the virtual FPGA (Figure 3). 

 

Figure 3. Virtual-FPGA showing LABs placed in Cartesian array with internal 

multiplexer and logic elements configured by the CBS. 

The virtual-FPGA is designed with non-destructive and course-grained architectures suitable for 

evolution. These circuits have been evolved for: a) image processing using softcore processors [11] 

and hardcore processors [12,13] for the GA process; b) fault tolerant systems [14,15] and c) pattern 

recognition [16,17]. It has been investigated as a robot controller for a ball- beam system [18,19]. 

2.1.2. Evolvable artificial neural network robotic controllers 

An ANN mimics a biological neural network with a structure of layered neurons with each layer 

interconnected. Each input to the neuron is multiplied by a weighting factor. When the sum of these 
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inputs into the neuron exceeds a firing threshold, the output value of the neuron will change. This 

output, called the activation function, can be of various shapes ranging from a step to a sigmoid 

function. There are wide ranges of network structures with the simplest being feed-forward. 

Normally the structure of the network, the firing threshold and the activation function are fixed when 

it is designed, while the interconnection weightings are adjusted in a training period before the ANN 

is used. 

For evolutionary purposes the weightings, firing thresholds, transfer function and even the 

network structure can be encoded in a chromosome, which can be evolved using standard 

evolutionary techniques. The chromosome’s search space is dependent on the ANN’s size, which is 

the number of interconnecting layers and neurons within each layer. ANN have been successfully 

evolved for light following and obstacle avoidance using: a) a recurrent ANN using variable length 

genotypes [20]; b) aperiodic firing neural networks using K-sets [21]; c) recurrent time-discrete 

networks [22]; d) dual networks for obstacle avoidance and target detection [23]; f) combining neural 

and fuzzy controllers [24]; g) a discrete time recurrent neural network evolved by NEAT (Neuro 

Evolution of Augmenting Topologies) [25]; h) a three layer recurrent leaky network [26], i) a deep 

layer neural network [27] and j) a recurrent neural network to move towards coloured objects [28], k) 

a single layered network evolved by a hardware based particle swarm optimization [29] l) a 

neurogenetic for obstacle avoidance and path planning [30], and j) a feedforward network cloned 

into a soft processor in an FPGA [31].  

2.1.3. Evolvable lookup table robotic controllers 

The LUT, also referred to as a ―table-based‖ controller, is used for quantized discrete sensor 

inputs and actuator outputs where the relationship between the inputs and outputs are mapped in a 

table. A current example of their use in control systems is the Maxim MAX31760 controller with a 

programmable LUT stored in non-volatile memory. They have been researched for several control 

applications including building-environmental control [32], combined with fuzzy logic controllers 

for underwater vehicles [33], chemical process control [34] and to increase the operational speed of a 

fuzzy obstacle avoidance controller in a mobile robot [35].  

For evolutionary purposes, the parameters and size of the LUT can be encoded into a 

chromosome and evolved. Several evolutionary capable robotic LUT controllers have been 

developed to control a range of robotic systems including: a) a mobile inverted pendulum [36]; b) the 

walking gait of a hexapod robot [37]; c) a curved ball-balancing beam system [38]; d) a fault tolerant 

ball plate system [39]; e) robotic navigation [40], and f) robotic behaviours including orbiting, path 

following, follow the leader and dispersal, implemented on a Kilobot simulation [41].  

2.2. Subsumption architecture 

The difficulties of scalability as the complexity of the tasks increases is a considerable problem 

within evolutionary robotics. These symptoms include: a large amount of time for evolution; 

difficulties in the initial generations due to the poor fitness gradient (bootstrap problem); many local 

minima (deception); and the difficulties getting the simulation to match the real world (reality gap). 

This paper uses monolithic and subsumption to evaluate scalability issues within the three controllers 

under examination. 

Subsumption architecture was first conceived by Brooks [2,3], using a hierarchy layered 
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behavioural approach where the lower level layers directly interfacing to the actuators, perform basic 

behaviours such as movement, avoidance and following, whereas the higher layers have complex 

behaviours such as foraging or fleeing. Each layer works independently, but the higher layers can 

override (subsume) the lower layers using an inhibitor which blocks the output of a lower layer, or a 

suppressor which replaces the inputs to the lower layer. Several researchers have used this method 

for evolving robotic navigational tasks for light following while avoiding objects using various 

behaviours including: a) obstacle avoidance with emergency stop [42]; b) light following with object 

avoidance [43]; avoidance, wandering, exploring and mapping [44]; c) wandering, obstacle 

avoidance, goal seeking, deadlock recovery, and emergency avoidance [45] and d) a three layer 

feed-forward network and communication between robots to evolve group behaviours in robots [46].  

3. Robot kinematics 

The derivation of the robot kinematics have been produced in a previous paper [40] which 

details the robot motion and sensor activation. The robot motors have been limited to three speeds: 

full reverse; full forward; and stopped giving nine possible robot motions. The robot has been 

specifically designed at Auckland University of Technology for future research to investigate the 

―Reality Gap‖ between simulation and real-world parameters. 

4. Common experimental systems 

4.1. Graphical user interface 

There are several robot simulator software packages available, including Microsoft Robot 

Studio, Gazebo, Actin and Webots. However, to have precise control over the software it was decided 

to create the GUI using Microsoft Visual Studio in the C# language. The GUI provided a means of 

monitoring and controlling the evolution of the controllers (Figure 4). From right to left the GUI 

provided: a) a visual representation of the robot and its trajectory, which could be stored; b) control 

and setup for both the GA, arenas and type of controller; and c) a status window showing current 

generation, average fitness, maximum fitness and the current elapsed time. 

 

Figure 4. GUI written in Visual Studio. 

4.2. Genetic algorithm 

The same GA was used across all experiments. The population size was 100, with the initial 
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population randomized. The selection process used elitist tournament selection with a group size of 

two, where two random individuals are selected from the population, and only the individual with the 

best fitness is selected. This process is repeated until there are only 50 remaining individuals that will 

be used as parents for the reproduction process. The reproduction used two-point crossover with a 

mutation rate of 3%. The fitness function, chromosome values and structures for the three controllers 

are described in the following sections. 

4.3. Fitness function 

4.3.1. Light following fitness function 

The task is to evolve the robot to turn towards the light and then move directly to it. The robot 

simulation had four starting positions, each with two separate headings 180° opposed, giving eight 

test runs for each individual (Figure 5). The fitness function is calculated to encourage the robot to 

move directly towards the light in a minimum time (1). The maximum fitness is 100, which is 

averaged over the eight test runs. Note the run time is set by the robot starting position and heading 

encouraging the robot to take the optimal path. 

 

Figure 5. The Cartesian co-ordinates of the starting positions for the light following 

robot and light source. Each starting position was tested with two orientations of 90
0
 and 

270
0
. (Note the arena size is 1200mm x1200mm). 

𝐹𝐿𝐹 = 100 −  
𝑓𝑖𝑛𝑎𝑙  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑓𝑟𝑜𝑚  𝑙𝑖𝑔𝑕𝑡

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑓𝑟𝑜𝑚  𝑙𝑖𝑔𝑕𝑡
× 100    (1)

4.3.2. Obstacle avoidance fitness function 

The task is to evolve a robot controller that will encourage the robot to explore the arena whilst 

avoiding obstacles. Three arenas are evaluated, with an individual controller evolved for each robot 

(Figure 6).  
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Figure 6. The three arenas used for obstacle avoidance, where S designates the starting 

position of the robot. 

The robot simulation started from the centre of the arena with eight different starting angles, 

changing in 45° steps. The simulation was stopped either when the robot hit a wall or object, or a 

time period of 20 seconds was reached. A 20 second period was chosen to allow the robot to move 

for a maximum distance of 2.44 meters, allowing the robot to fully explore the arena and test its 

object avoidance. The fitness function encouraged the robot to move around the arena avoiding the 

walls and obstacles. A penalty was given to small circular movements of the robot to encourage it to 

explore the arena (2). The robot could gain a maximum fitness of 100%. 

𝐹𝑂𝐴 =  
𝑟𝑢𝑛  𝑡𝑖𝑚𝑒

20
∗ 50 +  

20−(𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟  𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡  𝑐𝑜𝑢𝑛𝑡𝑒𝑟 )

20
∗ 50  (2)

4.3.3. Combined behaviours fitness function 

The task was for the robot to move towards the light at the centre of the arena in the shortest 

time possible whilst avoiding obstacles. Eight starting points and angles were used with obstacles 

placed directly in the way of the light source at the centre for each starting point (Figure 7). 

 

Figure 7. The arena used for the combined behaviours where S designates the starting 

position of the robot for each of the eight tests. 

The robot simulation run time was reduced from twenty seconds to ten seconds as the task was 

not to explore the arena, but rather to move as directly as possible towards the light. This time period 

allowed the robot to travel a maximum distance of 1200 mm giving the robot ample time to achieve 

its goal. The simulation stopped if either the robot hit a wall or obstacle, if the run time was exceeded 

or if the robot reached the light source. Two separate formulae were used depending on whether the 

robot reached the light. The first fitness formula encouraged the robot to move towards the light 
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while avoiding obstacles and has a maximum value of 30 (3). The second formula encouraged the 

robot to take the shortest path (4). Note the second formula was only used when the robot reached 

the light, thus 30 from the first formula was added to give a total of 100%. As time was not directly 

measured, pivoting on the spot to locate the light was not penalized. The maximum fitness was 92%. 

𝐹𝐿𝐹−𝑂𝐴 [𝑝𝑎𝑟𝑡  𝐴] =  30 −  
𝐹𝑖𝑛𝑎𝑙  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑓𝑟𝑜𝑚  𝑡𝑕𝑒 𝑙𝑖𝑔𝑕𝑡 𝑠𝑜𝑢𝑟𝑐𝑒

𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑓𝑟𝑜𝑚  𝑡𝑕𝑒 𝑙𝑖𝑔𝑕𝑡 𝑠𝑜𝑢𝑟𝑐𝑒
∗ 30           (3) 

 

𝐹𝐿𝐹−𝑂𝐴 [𝑝𝑎𝑟𝑡  𝐵]  =  30 +  1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑡𝑟𝑎𝑣𝑒 𝑙𝑙𝑒𝑑 −600

600
∗ 70           (4) 

5. System structures and chromosomes 

5.1. Evolvable hardware 

5.1.1. System overview (EHW) 

The system was comprised of two parts: a) the computer running the Altera Quartus IDE, and 

the Visual studio with the GUI, robot simulation and GA, and b) the FPGA with a NIOS processor 

interfacing between the virtual-FPGA and computer (Figure 8). The simulation and GA were run on 

the computer, as its processor speed was almost two orders of magnitude higher than the NIOS 

processor. A protocol was developed that reduced the need to send data continuously between the 

simulation and the virtual-FPGA when testing an individual. This protocol stored the response of the 

virtual-FPGA on the computer for each new input state, thus if the data was already in the computer 

it would look there, rather than interrogate the virtual-FPGA.  

 

Figure 8. The complete systems running on the computer and FPGA developed to evolve 

the evolvable hardware controller. 

In order to overcome the limitations of a normal FPGA (with a fine-grained architecture, 

capable of destructive routing), a virtual-FPGA was created. This was based on a Cartesian 

architecture (non-destructive and coarse-grained, providing a reduced search space) and 

implemented in the actual FPGA device.  The virtual-FPGA was comprised of logic array blocks 

(LAB) that contain multiplexers for switching inputs, and logic elements (LE) to provide logic 

manipulation of the selected inputs. The following virtual-FPGA architectures described in this paper 

are the result of several iterations of testing including reducing and flat layer architectures as well as 

a variety of logic element configurations. 
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5.1.2. Motor driver outputs 

All the versions of the virtual-FPGA had a coded 3-bit output which was used to control the 

robot direction (Table 1). 

Table 1. The eight robot directions derived from the VEPGA 3-bit output. 

Outputs  Direction  

000 Forward  

001 Forward Right 

010 Forward Left 

011 Pivot Left 

100 Pivot Right 

101 Reverse Left 

110 Reverse Right 

111 Reverse  

5.1.3. Light following architecture and chromosome (EHW) 

The virtual-FPGA had a twenty-bit input, comprising a maximum of 10 bits from each 

quantized light level sensor. The bits were encoded so that as the light level increased the bits were 

left-shifted on the inputs, with a level of zero equal to 0000000001 and a level of five equal to 

0000111111. Unused inputs were held at zero. The three output bits were coded to provide eight 

possible robot motions to match the outputs used in the LUT and ANN controllers.  

The virtual-FPGA consisted of three layers of eight LABs and a final stage of three LABs 

(Figure 9). 

 

Figure 9. LAB architecture for light following VFPGA. 

The LABs in the layer 1 each contained two multiplexers used to select one bit from each input 

source and a LE with 16 selectable logic expressions applied to the outputs of the multiplexers 

(Figure 10). The LABs in layers two to four had four multiplexers selecting one bit each from the 

previous layer, feeding four bits into a LE with 32 logic functions (Figure 11). The chromosome size 

for the virtual-FPGA can be calculated by the number of bits needed to control the multiplexers and 

logic elements. The first layer required 112-bits, (each LAB had 14-bits (MUXA 5-bits, MUXB 

5-bits LE 4-bits) 8 LABs per layer1 14 * 8 = 112 bits). The second and third layers had 136-bits each, 
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(each LAB has 17-bits (MUXA 3-bits, MUXB 3-bits, MUXC 3-bits, MUXD 3-bits, LE 5-bits) there 

were 8 LABs per layer 17 * 8 giving 136 bits). The fourth layer 4 had 51 bits, (it has the same 

structure as layer 2 and 3, (17-bits per LAB) but only 3 LABs 17 * 3 giving 51 bits). This gave a 

total chromosome size of 435 bits (Figure 12).  

 

Figure 10. LAB for first layer of light following virtual-FPGA. 

 

Figure 11. LAB for layers 2-4 of the light following, layers 1-4 of the obstacle avoidance, 

and layers 1-3 of the combine controller. 

 

Figure 12. Pictorial representation of the EHW chromosome. 

Layer 1 Layer 2 Layer 3 Layer4

LAB1 LAB2 LAB3 LAB4 LAB5 LAB6 LAB7 LAB8

MA MB LE MA MB MC MD LE

MA MB MC MD LE MA MB MC MD LE
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5.1.4. Obstacle avoidance architecture and chromosome (EHW) 

The virtual-FPGA had six inputs from the digital obstacle sensors and a three-bit output to give 

eight robot directions. The virtual-FPGA architecture had three layers, with the first two layers 

containing six LABs, and the final layer containing three LABs (Figure 13). The multiplexers and 

logic elements within the LAB were the same as layers 2–4 of the light follower virtual-FPGA 

(Figure 11). The chromosome size required to control the multiplexers and logic elements are 255 

bits. This is derived from the use of 15 LABs each requiring 17 bits, (MUXA 3-bits, MUXB 3-bits, 

MUXC 3-bits, MUXD 3-bits, LE 5-bits).  

 

Figure 13. LAB architecture for obstacle avoidance VFPGA. 

5.1.5. Combined behaviours architecture and chromosome (EHW) 

The virtual-FPGA had a 26-bit input, comprising 10 bits from each light sensor and 6-bits from 

the proximity sensors. The three output bits were coded to provide eight possible robot motions 

(Figure 14). Each LAB was similar to that used in the obstacle avoidance EHW (Figure 11).  

The chromosome size required to control the multiplexers and logic elements are 459 bits. This 

is derived from the use of 27 LABs each requiring 17 bits, (MUXA 3-bits, MUXB 3-bits, MUXC 

3-bits, MUXD 3-bits, LE 5-bits). 

 

Figure 14. LAB architecture for the combined light following and obstacle avoidance VFPGA. 
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5.2. Artificial neural network 

5.2.1. System overview (ANN) 

The completed system programmed in C# contained the ANN controlling the robotic simulation, 

and the connections to the GA (Figure 15). This setup was similar to the LUT experiment with the 

LUT replaced by an ANN. 

 

Figure 15. The system developed for evolving an ANN. 

A single layered, two-neuron, feed-forward network with an input bias on each neuron was used 

for all the ANN controllers. The activation output of the neuron used to drive each wheel had three 

levels, -1, 0 and 1, providing three motor speeds forward reverse and stopped, to match the other 

controller outputs. The activation set points are shown as -0.5 (A2) and 0.5 (A1); these are the points 

at which the motor changes from reverse, to stop then forward. (Figure 16). 

 

Figure 16. The three-step activation output of the neuron. 

The neurons required a bias input to allow them to move when no light was detected. The ANN 

chromosome was comprised of the neuron’s weights, the bias input and the mirrored set point of the 

activation output. All these parameters ranged from -1 to 1, changing in 0.1 increments.  

5.2.2. Light following chromosome (ANN) 

The ANN inputs were the two light sensors, which interfaced to each neuron via two weights, 

while the three state output of each neuron interfaced to the motor (Figure 17). In total, there were 

four weights, two biases and two activation set points in the chromosome. The activation set points 

(where the motor switches state) were part of the chromosome and altered by the GA process, 

ranging from -1 to 1 with a step size of 0.1. 
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Figure 17. The single layer, two neurons, ANN used for light following. 

The chromosome for this network was a combination of four weights (W), two activation 

thresholds (A) and one bias (B), W11, W12, W21, W22 A1, A2 and B. The weights, activation 

thresholds and bias values range from -1 to 1 with a resolution of 0.1 providing 21 possible values. 

5.2.3. Obstacle avoidance chromosome (ANN) 

The structure for the object avoidance ANN was similar to the light following ANN, except the 

binary output of the six obstacle sensors were interfaced to the individual neuron via six weights, 

giving sixteen values in the chromosome for the complete ANN (Figure 18). The chromosome for 

this system was a combination of 12 weights, two activation thresholds and one bias, W11, W12, 

W13, W14, W15, W16, W21, W22, W23, W24, W25, W26 A1, A2 and B. The weights range from 

-1 to 1 with a resolution of 0.1 providing 21 possible weights per synapses. 

 

Figure 18. The single layer, two neurons, ANN used for obstacle avoidance. 
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5.2.4. Combined behaviours chromosome (ANN) 

Still keeping with the same single layer two-neuron network, the inputs from the light sensors 

and obstacle avoidance were interfaced to each neuron via eight weights giving twenty values in the 

chromosome for the complete ANN (Figure 19). The chromosome for this system is a combination 

of 16 weights, two activation thresholds and one bias, W11, W12, W13, W14, W15, W16, W17, 

W18, W21, W22, W23, W24, W25, W26, W27, W28, A1, A2 and B. The weights range from -1 to 1 

with a resolution of 0.1 providing 21 possible weights. 

 

Figure 19. The single layer, two neurons, ANN used for the combined light following 

and obstacle avoidance. 

5.3. Lookup table 

5.3.1. System overview (LUT) 

The systems used to evolve the LUT were developed in Visual Studio C# containing the GUI, 

GA, robot simulation and LUT (Figure 20). 

 

Figure 20. The systems used to evolve the LUT controller. 
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The LUT mapped the quantized input sensors of the robot to the axis of the array; the parameter 

at the indexed point was used as an output to drive the robot’s actuators. In this case, the parameter 

contained the three motor speeds for each wheel, including forward (F), stopped (S) and reverse (R), 

giving eight robot directions (Table 2). The parameter SS (robot stopped) was not used, as it had no 

purpose in this application. 

Table 2. The eight robot directions encoded into the LUT. 

Motor  Direction  

FF Forward  

FS Forward Right 

SF Forward Left 

RF Pivot Left 

FR Pivot Right 

SR Reverse Left 

RS Reverse Right 

RR Reverse  

5.3.2. Light following chromosome (LUT) 

A two-dimensional table was used with the light levels from the left and right sensor quantized 

to fit the LUT indices (Figure 21). Ranges of LUTs were assessed ranging from 2x2 to 9x9 enabling 

the effects of quantization on the input sensors to be evaluated. It was found that the 6x6 had the 

optimum evolutionary efficiency versus controller performance reaching a 95% fitness within 36 

generations. However, a 9x9 array was chosen to test scalability issues of the controllers. 

 

Figure 21. The two-dimensional LUT for light following. 

5.3.3. Obstacle avoidance chromosome (LUT) 

Each of the six obstacle sensors produced a binary output dependent on whether an object was 

detected or not. The binary output of each of the six sensors were combined to form a six-bit number 

0 1 2 3 4 5 6 7 8

RS SR FS RR RR FS FF RF RS

SS SR SR SR FS FF FR RF FS

SR SS SR RF SR RF FR FR SR

FR FF SR SR FF FR RS RF FS

RF FF RR RF RR SR RR SF SF

RF FS FR FS RR SF FS RS SR

RR RR SF SF SF FF FS SF FF

FR RF RR FS FF RR RR FR RS

FR FR FF SF RS FS RS RS FF
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ranging from 0 to 63. This value was used to reference the parameters inside a one-dimensional LUT 

(Figure 22).  

 

Figure 22. The one-dimensional LUT for obstacle avoidance. 

5.3.4. Combined behaviours chromosome (LUT) 

Both the quantized outputs of the light sensor, and the digital word of the obstacle avoidance 

sensors were used to link to the axis of a three-dimensional LUT with the left and right sensors 

linked to the X and Y axis. The proximity sensors were linked to the Z-axis (Figure 23).  

 

Figure 23. The three-dimensional LUT for combined behaviours. 

5.4. Search space 

The search space (SS) for the LUT is the number of possible robot directions (eight) to the 

power of the number of elements in the LUT (5). 

𝑆𝑆 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑𝑠𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑡𝑎𝑏𝑙𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠                        (5) 

The search space for the ANN is number of possible steps to the power of the total combination 

of weights, bias points and activation set point (6). All the parameters in the ANN have been set to 

range from -1 to 1 giving a total number of 21 steps. The activation set point is mirrored between the 

plus and minus range giving one activation point per neuron. There is one bias point per neuron. 

𝑆𝑆 = ( 𝑠𝑡𝑒𝑝𝑠)(𝑤𝑒𝑖𝑔 𝑕𝑡𝑠+𝑏𝑖𝑎𝑠 +𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  𝑝𝑜𝑖𝑛𝑡𝑠 )                           (6) 

The search space for the EHW is two to the power of the number of bits in the configuration bit 

stream (7). 

𝑆𝑆 = 2𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑛𝑓𝑖𝑔 𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑏𝑖𝑡𝑠                                    (7) 

The search space for each controller and evolutionary efficiency is listed in the results section. 
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6. Results 

Extensive evaluations of the three evolved controllers were implemented. A summary of these 

results is presented in this paper with typical results displayed. Quantizing each light source into nine 

levels was used in all controllers. 

6.1. Light following 

It was found that the controller performance over all three controllers was similar. This was 

determined by their final fitness and observation of their pathways (Figure 24). Investigation of the 

evolutionary stages show the robot evolving to pivot and progress towards the light, moving more 

directly as the fitness improved. 

 

Figure 24. Robot paths at various stages of light following evolution for the ANN, LUT and EHW. 

The evolutionary efficiency of each controller was measured in the number of generations it 

took to evolve to a fitness greater than 95%. A graph of the generation’s vs fitness (Figure 25), 

demonstrate that the ANN and EHW had a similar evolutionary efficiency; however, the LUT took 

significantly longer to reach the required fitness. Note the starting average fitness was below 10% for 

all the controllers. 

 

Figure 25. Light following maximum fitness vs generation for ANN, LUT and EHW. 
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The search space is all the possible combinations that the chromosome contains, (these have 

been calculated using the Eqs (5–7) shown above). Whereas the fitness landscape is a graphical 

representation of the individual fitness of each combination of the chromosome in the search space. 

The search space for each controller was compared with the evolutionary efficiency (Table 3). The 

variations in search space are due to the variations in chromosome length for each controller which is 

linked to the sensor quantization which has been matched across controllers. The EHW had an 

equivalent evolutionary efficiency to the ANN even though its search space was far larger. The LUT 

had an acceptable result despite its high search space. 

Table 3. A comparison of the evolutionary efficiency and search space for light following. 

Controller Generation Search space 

ANN 6 3.8×1010 

LUT 49 1.4×1081 

EHW 9 8.8×10130 

To understand why the LUT had a reasonable performance despite its large search space, a 

typical cell usage was recorded (Figure 26). The LUT covers combinations of the two sensors that 

will never occur, such as one sensor at zero and the other at full brightness, giving the 9x9 LUT only 

31 valid cells (coloured areas). Recalculating the search space for these cells brings the search space 

down to 9.9x10
37

. The percentage of time spent in each cell is recorded on the left chart and the 

motor direction occurrences on the right. The data shows the robot pivoting and moving towards the 

light with a slight right offset, which is corrected by the occasional left turn. 

 

Figure 26. The 9x9 LUT showing the valid (coloured) and invalid (light) cells and the 

usage of the motor drive parameters. 

The EHW evolutionary efficiency was equal to that of the ANN even though its search space 

was extremely high. An analysis of the evolved circuits showed that the virtual-FPGA was able to 

produce a multitude of different circuits that performed the same task. This included a range of 

selections of the multiplexers and logic function. Effectively there are many possible solutions 

scattered throughout the search space. Three examples of the evolved controller’s Boolean logic are 

shown. There are twenty possible inputs, ten from the left sensor and ten from the right (refer section 

4.2.3). The inputs to the Boolean logic are described with the prefixes LS and RS equating to left and 

right sensors, while the suffix L(0-8) equating to the light level. Thus, LSL0 refers to a logic input 

from the left sensor light 0, and RSL9 refers to a logic input from the right sensor with a light sensor 

level of 9. The output to the motor is three bits (Motor[0] to Motor[2]) thus each solution has three 

Boolean expressions to describe each bit of the motor outputs (Figure 27 and Table 4). 
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Figure 27. Boolean logic inputs and outputs used in the light following Virtual-FPGA. 

Table 4. Light following evolved Boolean expressions. 

Circuit One 

Motor[0] = (!LSL8 & !LSL9 & LSL7) + (RSL9 & !LSL9 & LSL7) +  

(!LSL8 & !RSL7 & LSL7) + (RSL9 & !RSL7 & LSL7) 

Motor[1] = LSL7 + (RSL9 & RSL5) + (!RSL9 & !RSL5) 

Motor[2] = (!LSL9 & LSL7) + (!RSL7 & LSL7) 

Circuit Two 

Motor[0] = RSL6 & LSL9 

Motor[1] = !RSL4  + !RSL6; 

Motor[2] =  RSL6 & LSL5; 

Circuit Three 

Motor[0]  = !RSL6 & !LSL8 & RSL1 & RSL4; 

Motor[1] = !RSL6; 

Motor[2] = RSL4 & RSL1 & !RSL6; 

6.2. Obstacle avoidance 

The controller performance for all three controllers were similar, with all three able to obtain a 

fitness greater than 80%. Observation of the paths showed the robot evolving exploration and 

avoidance behaviours (Figure 28). 

The evolutionary efficiency of each controller was measured in the number of generations it 

took to evolve to a fitness greater than 80%. The stages of the evolutionary process of the controllers 

in the three arenas showed that the ANN and EHW were similar in performance, whereas the LUT 

took a significantly longer time to evolve (Figure 29 to Figure 31). Note the starting average fitness 

of all controllers is below 10%. 

The search space for each controller was compared with the evolutionary efficiency (Table 5). 

The EHW performed well compared to the ANN, even though it had the largest search space. The 

LUT had the worst result of the three, corresponding to its larger search space. 

The EHW for obstacle avoidance required a smaller configuration bit stream, and thus a reduced 

search space than the one required for light following. However, its search space was still much 

larger than that of the ANN, but still performed with a similar evolutionary efficiency. Once again, 

the evolved circuits were analyzed, and it was found that multiple circuits could be evolved to 

perform the same task, effectively scattering the search space with multiple solutions. The Boolean 

inputs are named after the position of each obstacle sensor, while the three outputs are combined to 
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create the 3-bit motor logic Motor[0]-[2] (Figure 32 and Table 6). 

 

Figure 28. The final evolved paths taken by the robot using three different arenas for the 

ANN, LUT and EHW. 

 

Figure 29. Obstacle avoidance arena-A maximum fitness vs generation for ANN, LUT and EHW. 

 

Figure 30. Obstacle avoidance arena-B maximum fitness vs generation for ANN, LUT and EHW. 
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Figure 31. Obstacle avoidance arena-C maximum fitness vs generation for ANN, LUT and EHW. 

Table 5. A comparison of the evolutionary efficiency and search space for obstacle avoidance. 

Controller Arena Generation Search space 

 

ANN 

A 10  

1.4x1021 B 14 

C 8 

 

LUT 

A 262  

6.2x1057 B 208 

C 161 

 

EHW 

A 25  

5.78x1076 B 29 

C 13 

 

Figure 32. Boolean logic parameters used in the obstacle avoidance Virtual-FPGA. 

Table 6. Obstacle avoidance evolved Boolean expressions. 

Circuit One 

Motor[0] = 0 

Motor[1] =  Front-Right + Centre + Right + Front-Left + Left 

Motor[2] = 0 

Circuit Two 

Motor[0] = 0 

Motor[1] = Centre + Right-Centre + Left-Centre + Right 

Motor[2] = 0 

Circuit Three 

Motor[0] = Back 

Motor[1] = Back + Right + Centre + Front-Left + Front-Right 

Motor[2] = Back + Right 
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6.3. Combined light following and obstacle avoidance 

The controller performance and evolutionary efficiency of each controller is compared for both 

monolithic and subsumption evolution methods. For monolithic evolution, the GA process was 

stopped when the fitness was greater than 80%, whereas for subsumption evolution, the 

independently evolved controller where combined and one fitness test run.  

The controller performance for the three controllers for monolithic evolution was comparable 

with all controllers obtaining a fitness greater than 80% and observation of the paths showing the 

correct use of the combined behaviours (Figure 33). The controller performance using subsumption 

evolution showed the ANN and EHW had similar performance. The LUT performed well, although it 

did not move to the light as directly as the other controllers did.  

 

Figure 33. The pathways and fitness for the combined behaviours for the ANN, LUT and 

EHW comparing monolithic vs subsumption architecture. 

The evolutionary efficiency showed that the ANN and EHW had similar behaviours, while the 

LUT performed poorly in comparison (Figure 34).  

 

Figure 34. Monolithic light following while avoiding obstacles maximum and average 

fitness vs generation for ANN, LUT and EHW. 

The search space and evolutionary efficiency was compared for the combined behaviours 

(Table 7). Once again, the EHW had a comparable efficiency to the ANN with the LUT performing 

poorly. Subsumption has a higher evolutionary efficiency than the monolithic method. 
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Table 7. A comparison of the evolutionary efficiency and search space for light following 

white avoiding obstacles. 

Controller Process Generation Search Space 

ANN monolithic 850 2.8x1026 

light following 6 3.8x1010 

object avoidance 10 1.4x1021 

 

LUT 

monolithic 11,000 1.0x103699 

light following 49 1.4x1081 

object avoidance 262 6.2x1057 

 

EHW 

monolithic 700 1.4x10138 

light following 9 8.8x10130 

object avoidance 25 5.78x1076 

The EHW and ANN had a similar number of generations to evolve a suitable solution. The LUT 

does not scale well, due to its large search space, however a good solution can still be found within a 

reasonable time. This is due to most of the search space not being used. Only one slice of the LUT is 

used for light following when no obstacle is detected. When an obstacle is detected, it only needs to 

adopt a turning motion in the other LUT segments, until the obstacle is avoided and then switch back 

to the light following. Examples of the evolved EHW controller once again show multiple circuits. 

The Boolean input and output parameter names are a combination of those used in the light 

following and obstacle avoidance combining the obstacle avoidance sensors with the light sensors 

(Figure 35 and Table 8). 

Table 8. Combined behaviours evolved Boolean expressions. 

Circuit One 

Motor[0] = RSL1 + (Back & LSL5) + (Back & !Left) + (LSL5 & Centre) + (!Left & Centre) + 

(Back & !LSL9)  + (Back & RSL2) + (LSL5 & !Centre & RSL6 & LSL9) + (!Left & 

!Right-Centre & RSL6 & LSL9) + (!Centre & RSL6 & LSL9 & RSL2) 

Motor[1] =  (Right-Centre & LSL5) + (!RSL6 & LSL5) + (Right-Centre & !Left) + (!RSL6 & 

!Left) + (LSL5 & Right-Centre + (!Left & Centre 

Motor[2] = Back + RSL1 + (LSL5 & Centre) + (!Left & Centre) + (!Right-Centre & RSL6 & 

LSL9) 

Circuit Two 

Motor[0] = !Back + (!RSL6 & !Left) + (!LSL3 & !RSL1) + (RSL6 & RSL4 & Left-Centre) + 

(!RSL6 & !RSL4 + !Left-Centre); 

Motor[1] = !Back + (!RSL6 & !Left + (!LSL3 & !RSL1) + (RSL6 & RSL4 & !Left-Centre) + 

(!RSL6 + !RSL4 +(!Left-Centre) 

Motor[2] = !Left-Centre & !RSL6 & !Left 

Circuit Three 

Motor[0] = !LSL5 + !RSL7 + RSL0 

Motor[1] = Left + !RSL5 + (RSL2 & !Left-Centre & LSL7) + (RSL2 & Left-Centre & !LSL7) 

Motor[2] = (!Left & RSL5) + (!Left & Left-Centre) & LSL7) + (!Left & !Left-Centre & 

!LSL7) 
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Figure 35. Boolean logic parameters used in the combined behaviours. 

6.4. A comparison of results with other researchers 

This section compares the results presented in this paper with other researchers evolving 

controllers for light following or obstacle avoidance in two wheeled robots. 

Á. Pintér-Bartha et al. [4] used an ANN to evolve a robot to move towards a light source. A 

three layer fully meshed recurrent neural network with two hidden nodes was used. The selection 

method was mixed elitist and roulette wheel with a population size of 50 individuals. The 

reproduction method was uniform crossover with a mutation rate of 10%. The fitness function was a 

combination the time taken and the distance from the light. It was found that a satisfactory solution 

could be found in 200 generations. The single layer ANN used in this manuscript compares 

favourably against this controller, taking approximately 10 generations to obtain a suitable fitness. 

This can be accounted for by the differences in the neural network and the number of layers used.  

M. Okura et al. [6] evolved a Xilinx XC6216 FPGA to control the motion of a Khepera robot to 

avoid obstacles. The robot has four front facing sensors that are converted into a binary number. The 

fitness was calculated from the distance travelled the number of obstacles avoided and the number of 

changes in direction of the motor.  The population size was 10, and the GA was able to achieve a 

reasonable performance after 20 generations the robot ran for five seconds. The EHW used in this 

paper compares favourable against this as a controller was evolved in 20 seconds which ran or 20 

seconds in a more complex arena. 

K. C. Tan et al. [7] evolved a Xilinx XC6216 FPGA to control the motion of a Khepera robot to 

follow a light. The population size was 121 with a combination of elitist and roulette wheel used for 

selection. The reproduction method was multi-cut crossover with a mutation rate of one percent. For 

light following a satisfactory outcome was achieved in 200 generations. The EHW used in this paper 

once again compares favourable against this. 

7. Conclusions 

It has been shown that a EWH compares well in comparison with an ANN providing excellent 

controller performance and good evolutionary efficiency. The scalability of EHW as the complexity 

of the task increases is mitigated by two factors: 1) the virtual-FPGA’s ability to perform multiple 

tasks without a large increase in hardware; and 2) the architecture having multiple solutions, enabling 

the GA to find solutions in the search space quickly. A more robust controller is created by evolving 

the controller in multiple environments. Finally, the resolution of the quantized signal affected only 
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the top end of the controller performance. 

A successful controller for light following can be evolved in less than ten generations. A 

successful controller for obstacle avoidance can be evolved in less than 10 to 30 generations for the 

three arenas. The EWH controller would be an excellent choice when used with a hybrid FPGA that 

incorporates a hardwired ARM CPU internal to the device, such as the Altera Cyclone V series. This 

could be incorporated into a fault tolerant adaptable controller, with the internal ARM processor 

running a GA process in the background and updating the virtual-FPGA when required. 

The ANN is shown to be a robust controller that is suitable for evolutionary robotics. It does not 

suffer the scalability issues of the LUT and is well suited for 32 to 64-bit processors. 

The LUT can evolve to a good control performance but has issues with scalability, although 

these are lessened by the reduction in the search space due to large parts of the LUT not being 

utilized. The evolved controller would be useful in the commonly used 8-bit microcontroller, which 

has limited processing power, making it unsuitable for the floating-point operations an ANN 

requires. 
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