Citation: Edith Martinez-Guerra, Veera Gnaneswar Gude. Energy aspects of microalgal biodiesel production[J]. AIMS Energy, 2016, 4(2): 347-362. doi: 10.3934/energy.2016.2.347
[1] | Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294-306. doi: 10.1016/j.biotechadv.2007.02.001 |
[2] | Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev 14: 217-232. |
[3] | Moody JW, McGinty CM, Quinn JC (2014) Global evaluation of biofuel potential from microalgae. Proc Natl Acad Sci 111: 8691-8696. doi: 10.1073/pnas.1321652111 |
[4] | Lardon L, Helias A, Sialve B, et al. (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43: 6475-6481. doi: 10.1021/es900705j |
[5] | Uduman N, Qi Y, Danquah MK, et al. (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 20: 12701-12715. |
[6] | Batan L, Quinn J, Willson B, et al. (2010) Net Energy and Greenhouse Gas Emission Evaluation of Biodiesel Derived from Microalgae. Environ Sci Technol 44: 7975-7980. doi: 10.1021/es102052y |
[7] | Stephenson AL, Kazamia E, Dennis JS, et al. (2010) Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energ Fuel 24: 4062-4077. doi: 10.1021/ef1003123 |
[8] | Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energ 88: 3499-3506. |
[9] | Liu X, Saydah B, Eranki P, et al. (2013) Pilot-scale data provided enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource Technol 148: 163-171. |
[10] | Ozkan A, Kinney K, Katz L, et al. (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource Technol 114: 542-548. |
[11] | Molina Grima E, Belarbi EH, AciénFernández FG, et al. (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20: 491-515. |
[12] | Jorquera O, Kiperstok A, Sales EA, et al. (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101: 1406-1413. doi: 10.1016/j.biortech.2009.09.038 |
[13] | Slade R, Bauen A (2013) Microalgae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass bioenerg 53: 29-38. |
[14] | Singh M, Shukla R, Das K (2013) Harvesting of microalgal biomass in Biotechnological applications of microalgae. CRC Press: 77-88. |
[15] | Vandamme D, 2013. Flocculation based harvesting processes for microalgae biomass production (Doctoral dissertation, UGent). |
[16] | Sanghi R, Singh V, Green Chemistry for Environmental Remediation. John Wiley & Sons; 2012. Chapter 8.4. |
[17] | Reddy HK, Muppaneni T, Patil PD, et al. (2014) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel 115: 720-726. doi: 10.1016/j.fuel.2013.07.090 |
[18] | Ali M, Watson IA (2015) Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production. Renew Energy 76: 470-477. |
[19] | Martinez-Guerra E, Gude VG, Mondala A, et al. (2014) Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent. Bioresource Technol 156: 240-247. |
[20] | Martinez-Guerra E, Gude VG, Mondala A, et al. (2014b) Microwave and ultrasound enhanced extractive-transesterification of algal lipids. Appl Energ 129: 354-363. |
[21] | Patil PD, Gude VG, Mannarswamy A, et al. (2012) Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 97: 822-831. |
[22] | Chen CL, Huang CC, Ho KC, et al. (2015) Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes. Bioresource Technol 194: 179-186. |
[23] | Cheng J, Yu T, Li T, et al. (2013) Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresource Technol 131: 531-535. |
[24] | Koberg M, Cohen M, Ben-Amotz A, et al. (2011) Bio-diesel production directly from the microalgae biomass of nannochloropsis by microwave and ultrasound radiation. Bioresource Technol 102: 4265-4269. |
[25] | Araujo GS, Matos LJBL, Fernandes JO, et al. (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20: 95-98. doi: 10.1016/j.ultsonch.2012.07.027 |
[26] | Wiyarno B, Yunus RM, Mel M (2010) Ultrasound Extraction Assisted (UEA) of oil from microalgae (nannochloropsis sp.). Int J Sci Eng Technol 3: 65-71. |
[27] | Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49: 2979-2985. |
[28] | Adam F, Abert-Vian M, Peltier G, et al. (2012) Solvent-free ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technol 114: 457-465. |
[29] | Lee JY, Yoo C, Ju SY, et al. (2010) Comparison of several methods for effective lipid extraction from microalgaemicroalgae. Bioresource Technol 101: S75-S77. |
[30] | Balasundaram B, Skills SC, Llewellyn CA (2012) A low energy process for the recovery of bioproducts from cyanobacteria using a ball mill. Biochem Eng J 69: 48-56. |
[31] | McGarry MG (1970) Alga flocculation with aluminium sulfate and polyelectrolytes. J Water Pollut Control Fed 42: R191-201. |
[32] | Benemann JR, Kopman BL, Weissman DE, et al. Development of microalgae harvesting and high rate pond technologies in California. In: Shelef G, Soeder CJ, editors. Algal biomass. Amsterdam: Elsevier; 1980, 457. |
[33] | Moraine R, Shelef G, Sandbank F, Bar-Moshe Z, Shvartzbard I. Recovery of sewage borne algae: flocculation and centrifugation technique. In: Shelef G, Soeder CJ, editors. Algae biomass. Amsterdam: Elsevier; 1980, 531-546. |
[34] | Koopman B, Lincoln EP (1983) Autoflotation harvesting of algae from high rate pond effluents. Agric Wastes 5: 231-246. doi: 10.1016/0141-4607(83)90038-0 |
[35] | Lincoln EP (1985) Resource recovery with microalgae. Arch Hydrobiol 20: 25-34. |
[36] | Buelna G, Bhattarai KK, de la Nuoe J, et al. (1990) Evaluation of various flocculants for the recovery of algal biomass grown on pig-Waste. Biol Waste 31: 211-222. doi: 10.1016/0269-7483(90)90160-T |
[37] | Harith ZT, Yusoff FM, Mohamed MS, et al. (2009) Effect of different flocculants on the flocculation performance of microalgae, Chaetoceroscalcitrans, cells. Afr J Biotechnol 8: 5971-5978. |
[38] | Bosma R, van Spronsen WA, Tramper J, et al. (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15: 143-153. |
[39] | Zhang X, Hu Q, Sommerfeld M, et al. (2010) Harvesting algal biomass for biofuelsusing ultrafiltration membranes. Bioresour Technol 101: 5297-5304. doi: 10.1016/j.biortech.2010.02.007 |
[40] | Zou S, Gu Y, Xiao D, et al. (2011) The role of physical and chemical parameters on forwardosmosis membrane fouling during algae separation. J Membr Sci 366: 356-362. doi: 10.1016/j.memsci.2010.10.030 |
[41] | Mohn F (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. Algae Biomass: 547-571. |
[42] | Bilad MR, Vandamme D, Foubert I, et al. (2012) Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technol 111: 343-352. |
[43] | Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio 12: 165-178. |
[44] | Supple D. MIT Energy Club (https://mitei.mit.edu/research). Accessed February 5, 2016. |
[45] | University of Washington (http://www.ocean.washington.edu). Accessed February 5, 2016. |
[46] | Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14: 2596-2610. |
[47] | Gude VG, Patil PD, Deng S, et al. (2011) Microwave enhanced methods for biodiesel production and other environmental applications. Green chemistry for environmental remediation. New York: Wiley Interscience, 209-249. |
[48] | Gude VG, Patil P, Martinez-Guerra E, et al. (2013). Microwave energy potential for biodiesel production. Sustainable Chemical Processes 1: 1-31. doi: 10.1186/2043-7129-1-1 |
[49] | Ma G, Hu W, Pei H, et al. (2016) In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energ Convers Manage 90: 41-46. |
[50] | Kanitkar AV, Master’s Thesis. Lousiana State University, Baton Rougue, LA.2010 |
[51] | Kanitkar A, Balasubramanian S, Lima M, et al. (2011) A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves. Bioresource Technol 102: 7896-7902. |
[52] | Balasubramanian S, Allen JD, Kanitkar A, et al. (2011) Oil extraction from Scenedesmusobliquus using a continuous microwave system--design, optimization, and quality characterization. Bioresource Technol 102: 3396-3403. |
[53] | Stavarache C, Vinatoru M, Maeda Y, et al. (2007) Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason Sonochem 14: 413-417. |
[54] | Santos FFP, Rodrigues S, Fernandes FAN (2009) Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process Technol 90: 312-316. doi: 10.1016/j.fuproc.2008.09.010 |
[55] | Cintas P, Mantegna S, Gaudino EC, et al. (2010) A new pilot flow reactor for high intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrason Sonochem 17: 985-989. doi: 10.1016/j.ultsonch.2009.12.003 |
[56] | Chisti Y (2013) Constraints to commercialization of algal fuels. J biotechnol 167: 201-214. |
[57] | Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel. Environ Sci Technol 45: 7060-7067. doi: 10.1021/es2006995 |
[58] | Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102: 50-56. doi: 10.1016/j.biortech.2010.06.048 |
[59] | Chowdhury R, Viamajala S, Gerlach R (2012) Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration. Bioresour Technol 108: 102-111. |
[60] | Clarens AF, Nassau H, Resurreccion EP, et al. (2011) Environmental Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation. Environ Sci Technol 45: 7554-7560. doi: 10.1021/es200760n |
[61] | Frank ED, Palou-Rivera I, Elgowainy A, et al. (2011) Life- Cycle Analysis of Algal Lipid Fuels with the GREET Model; Argonne National Laboratory: Argonne, IL, 2011. |
[62] | Khoo HH, Sharratt PN, Das P, et al. (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons. Bioresour Technol 102: 5800-5807. |
[63] | Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae Haematococcus pluvialis and Nannochloropsis. Appl Energy 88: 3507-3514. doi: 10.1016/j.apenergy.2010.12.052 |
[64] | Sander K, Murthy G (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15: 704-714. |
[65] | Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17: 33-39. doi: 10.1016/S0961-9534(99)00019-7 |
[66] | Shirvani T, Yan X, Inderwildi OR, et al. (2011) Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ Sci 4: 3773-3778. doi: 10.1039/c1ee01791h |
[67] | Vasudevan V, Stratton RW, Pearlson MN, et al. (2012) Environmental Performance of Algal Biofuel Technology Options. Environ Sci Technol 46: 2451-2459. doi: 10.1021/es2026399 |
[68] | Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26: 126-131. doi: 10.1016/j.tibtech.2007.12.002 |
[69] | Fast SA, Kokabian B, Gude VG (2014) Chitosan enhanced coagulation of algal turbid waters–Comparison between rapid mix and ultrasound coagulation methods. Chem Eng J 244: 403-410. doi: 10.1016/j.cej.2014.01.081 |
[70] | Fast SA, Gude VG (2015) Ultrasound-chitosan enhanced flocculation of low algal turbid waters. J Ind Eng Chem 24: 153-160. doi: 10.1016/j.jiec.2014.09.023 |
[71] | Patil PD, Gude VG, Mannarswamy A, et al. (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technol 102: 118-122. doi: 10.1016/j.biortech.2010.06.031 |
[72] | Patil PD, Gude VG, Mannarswamy A, et al. (2011) Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technol 102: 1399-1405. doi: 10.1016/j.biortech.2010.09.046 |
[73] | Martinez-Guerra E, Gude VG (2016) Energy analysis of extractive transesterification of algal lipids for biocrude production. Biofuels, in press. |
[74] | Yang J, Xu M, Zhang X, et al. (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technol 102: 159-165. |
[75] | Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Biochem Cell Bio 37: 911-917 |
[76] | Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509. |
[77] | Gude VG (2015) Synergism of microwaves and ultrasound for advanced biorefineries. Resource-Efficient Technologies 1: 116-125. doi: 10.1016/j.reffit.2015.10.001 |