Citation: Michaela Weissgram, Thomas Ters, Hedda K. Weber, Christoph Herwig. Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor[J]. AIMS Energy, 2015, 3(4): 592-611. doi: 10.3934/energy.2015.4.592
[1] | Maniatis K, Chiaramonti D, Thornley P (2012) Framework and perspectives of industrial lignocellulosic ethanol deployment: Introduction to the 1st International Conference on Lignocellulosic Ethanol. Biomass Bioenerg 46: 1-4. doi: 10.1016/j.biombioe.2012.10.001 |
[2] | Fernandes DLA, Pereira SR, Serafim LS, et al. (2012) Second Generation Bioethanol from Lignocellulosics: Processing of Hardwood Sulphite Spent Liquor. In: Pinheiro Lima MA, editor. Bioethanol: InTech. pp. 123-152. |
[3] | Nigam JN (2001) Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. J Ind Microbiol Biotechnol 26: 145-150. doi: 10.1038/sj.jim.7000098 |
[4] | Frederick WJ, Lien SJ, Courchene CE, et al. (2008) Co-production of ethanol and cellulose fiber from Southern Pine: A technical and economic assessment. Biomass Bioenerg 32: 1293-1302 doi: 10.1016/j.biombioe.2008.03.010 |
[5] | Rødsrud G (2011) Biorefining-expanding the sulfite pulping biorefinery concept; Conference presentation at World Biofuels Markets; Rotterdam. |
[6] | Lawford HG, Rousseau JD (1993) Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered E. coli. Appl Biochem Biotechnol 39-40: 667-685. doi: 10.1007/BF02919027 |
[7] | Helle SS, Lin T, Duff SJB (2008) Optimization of spent sulfite liquor fermentation. Enzyme Microb Technol 42: 259-264. doi: 10.1016/j.enzmictec.2007.10.004 |
[8] | Batt CA, Caryallo S, Easson DD, et al. (1986) Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 28: 549-553. doi: 10.1002/bit.260280411 |
[9] | Pereira S, Ivanusa S, Evtuguin D, et al. (2012) Biological treatment of eucalypt spent sulphite liquors: a way to boost the production of second generation bioethanol. Biores Technol 103: 131-135. doi: 10.1016/j.biortech.2011.09.095 |
[10] | Björling T, Lindman B (1989) Evaluation of xylose-fermenting yeasts for ethanol production from spent sulfite liquor. Enzyme Microb Technol 11: 240-246. doi: 10.1016/0141-0229(89)90099-9 |
[11] | Kurtzman C, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51: 2-14. doi: 10.1007/S10267-009-0011-5 |
[12] | Yu S, Wayman M, Parekh SK (1987) Fermentation to ethanol of pentose-containing spent sulphite liquor. Biotechnol Bioeng 29: 1144-1150. doi: 10.1002/bit.260290915 |
[13] | Lai LX (2010) Bioproducts from sulfite pulping: Bioconversion of sugar streams from pulp, sludge, and spent sulfite liquor: University of Washington. |
[14] | Taherzadeh MJ, Fox M, Hjorth H, et al. (2003) Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol 88: 167-177. doi: 10.1016/S0960-8524(03)00010-5 |
[15] | Lindén T, Hahn-Hägerdal B (1989) Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase. Enzyme Microb Technol 11: 583-589. doi: 10.1016/0141-0229(89)90086-0 |
[16] | Helle SS, Murray A, Lam J, et al. (2004) Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol 92: 163-171. doi: 10.1016/j.biortech.2003.08.011 |
[17] | Guo Z, Olsson L (2014) Characterization and fermentation of side streams from sulfite pulping. Process Biochem 49: 1231-1237. doi: 10.1016/j.procbio.2014.05.002 |
[18] | Pinel D, D'Aoust F, del Cardayre SB, et al. (2011) Saccharomyces cerevisiae Genome Shuffling through Recursive Population Mating Leads to Improved Tolerance to Spent Sulfite Liquor. App Env Microbiol 77: 4736-4743. doi: 10.1128/AEM.02769-10 |
[19] | Pereira S, Sanchez i Nogue V, Frazao C, et al. (2015) Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering. Biotechnol Biofuel 8: 50. doi: 10.1186/s13068-015-0234-y |
[20] | Steensels J, Snoek T, Meersman E, et al. (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38: 947-995. doi: 10.1111/1574-6976.12073 |
[21] | Boyer LJ, Vega JL, Klasson KT, et al. (1992) The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture. Biomass Bioenerg 3: 41-48. doi: 10.1016/0961-9534(92)90018-L |
[22] | Palmqvist E, Almeida JS, Hahn-Hagerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62: 447-454. |
[23] | Olsson L, Hahn-Hägerdal B (1993) Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem 28: 249-257. doi: 10.1016/0032-9592(93)80041-E |
[24] | Parajó JC, Domínguez H, Domínguez J (1998) Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresour Technol 66: 25-40. |
[25] | Strickland RC, Beck MJ (1984) Effective pretreatments and neutralization methods for ethanol production from acid - catalyzed hardwood hydrolyzates using Pachysolen tannophilus. Muscle Shoals: T.V.A. |
[26] | Xavier A, Correia M, Pereira S, et al. (2010) Second-generation bioethanol from eucalypt sulphite spent liquor. Bioresour Technol 101: 2755-2761. doi: 10.1016/j.biortech.2009.11.092 |
[27] | Bajwa PK, Shireen T, D'Aoust F, et al. (2009) Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng 104: 892-900. doi: 10.1002/bit.22449 |
[28] | Lynd LR, Cushman JH, Nichols RJ, et al. (1991) Fuel Ethanol from Cellulosic Biomass. Science 251: 1318-1323. doi: 10.1126/science.251.4999.1318 |
[29] | Payton MA (1984) Production of ethanol by thermophilic bacteria. Trends Biotechnol 2: 153-158. doi: 10.1016/0167-7799(84)90032-5 |
[30] | Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66: 10-26. doi: 10.1007/s00253-004-1642-2 |
[31] | Klinke H, Thomsen A, Ahring B (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57: 631-638. doi: 10.1007/s002530100825 |
[32] | Lynd LR, Baskaran S, Casten S (2001) Salt Accumulation Resulting from Base Added for pH Control, and Not Ethanol, Limits Growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at Elevated Feed Xylose Concentrations in Continuous Culture. Biotechnol Prog 17: 118-125. doi: 10.1021/bp000158n |
[33] | Ng TK, Ben-Bassat A, Zeikus JG (1981) Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microb 41: 1337-1343. |
[34] | Svetlitchnyi VA, Kensch O, Falkenhan DA, et al. (2013) Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol Biofuels 6: 31. doi: 10.1186/1754-6834-6-31 |
[35] | Georgieva T, Ahring B (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77: 61-68. doi: 10.1007/s00253-007-1149-8 |
[36] | Georgieva T, Mikkelsen M, Ahring B (2008) Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor. In: Adney W, McMillan J, Mielenz J et al., editors. Biotechnology for Fuels and Chemicals: Humana Press. 99-110. |
[37] | Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 11: 115. doi: 10.1186/1475-2859-11-115 |
[38] | Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58: 109-130. doi: 10.1016/S0169-7439(01)00155-1 |
[39] | Grant TM, King CJ (1990) Mechanism of irreversible adsorption of phenolic compounds by activated carbons. Ind Eng Chem Res 29: 264-271. doi: 10.1021/ie00098a017 |
[40] | De Sousa F, Reimann A, Björklund M, et al. (2001) Estimating the amount of phenolic hydroxyl groups in lignins. Proceedings of the 11th International Symposium on Wood Pulp Chemistry 3: 649-653. |
[41] | Weissgram M, Gstöttner J, Lorantfy B, et al. (2015) Generation of PHB from spent sulfite liquor using halophilic microorganisms. Microorganisms 3: 268. doi: 10.3390/microorganisms3020268 |
[42] | Chang T, Yao S (2011) Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 92: 13-27. doi: 10.1007/s00253-011-3456-3 |
[43] | Gütsch Jenny S, Sixta H (2011) Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal). Holzforschung 65: 511-518. |
[44] | Gütsch JS, Sixta H (2012) Regeneration of Spent Activated Charcoals Used for Lignin Removal from Prehydrolysis-Kraft Prehydrolyzates. Ind Eng Chem Res 51: 8624-8630. doi: 10.1021/ie3006116 |
[45] | Mohan SV, Karthikeyan J (1997) Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ Pollut 97: 183-187. doi: 10.1016/S0269-7491(97)00025-0 |
[46] | Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Biores Technol 93: 1-10. doi: 10.1016/j.biortech.2003.10.005 |
[47] | Parajó JC, Dominguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb Technol 21: 18-24. doi: 10.1016/S0141-0229(96)00210-4 |
[48] | Maddox IS, Murray A (1983) Production of n-butanol by fermentation of wood hydrolysate. Biotechnol Lett 5: 175-178. doi: 10.1007/BF00131898 |
[49] | Montané D, Nabarlatz D, Martorell A, et al. (2006) Removal of lignin and associated impurities from xylo-oligosaccharides by activated carbon adsorption. Ind Eng Chem Res 45: 2294-2302. doi: 10.1021/ie051051d |
[50] | Barnard D, Casanueva A, Tuffin M, et al. (2010) Extremophiles in biofuel synthesis. Environ Technol 31: 871-888. doi: 10.1080/09593331003710236 |
[51] | Brynjarsdottir H, Wawiernia B, Orlygsson J (2012) Ethanol Production from Sugars and Complex Biomass by Thermoanaerobacter AK5: The Effect of Electron-Scavenging Systems on End-Product Formation. Energ Fuel 26: 4568-4574. doi: 10.1021/ef300754q |
[52] | Liu HS, Hsu HW, Sayler GS (1988) Bioconversion of D-Xylose and Pretreated Oak Sawdust to Ethanol Using Clostridium Thermosacchrolyticum by Batch and Continuous Up-Flow Reactors. Biotechnol Prog 4: 40-46. doi: 10.1002/btpr.5420040108 |
[53] | Helle S, Cameron D, Lam J, et al. (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzyme Microb Technol 33: 786-792. doi: 10.1016/S0141-0229(03)00214-X |
[54] | Carreira LH, Wiegel J, Ljungdahl LG (1983) Production of ethanol from biopolymers by anaerobic, thermophilic, and extreme thermophilic bacteria. I. Regulation of carbohydrate utilization in mutants of Thermoanaerobacter ethanolicus. Medium: X; Size: Pages: 183-191. |
[55] | Cook GM, Janssen PH, Morgan HW (1993) Simultaneous uptake and utilisation of glucose and xylose by Clostridium thermohydrosulfuricum. FEMS Microbiology Letters 109: 55-61. doi: 10.1111/j.1574-6968.1993.tb06143.x |
[56] | Shaw AJ, Podkaminer KK, Desai SG, et al. (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci 105: 13769-13774. doi: 10.1073/pnas.0801266105 |