Citation: W.A.D.S.S. Weerasinghe, K.P. Vidanapathirana, K.S. Perera. Performance evaluation of polyaniline-based redox capacitors with respect to polymerization current density[J]. AIMS Energy, 2018, 6(4): 593-606. doi: 10.3934/energy.2018.4.593
[1] | Zhang X, Lin Z, Chen B, et al. (2014) Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J Power Sources 246: 283–289. doi: 10.1016/j.jpowsour.2013.07.080 |
[2] | Ryu KS, Kim KM, Park NG, et al. (2002) Symmetric redox supercapacitors with conducting polyaniline electrodes. J Power Sources 103: 305–309. doi: 10.1016/S0378-7753(01)00862-X |
[3] | Lee J, Lee S (2016) Applications of novel Carbon/AlPO4 hybrid-coated H2Ti12O25 as a high-performance anode for cylindrical hybrid supercapacitors. ACS Appl Matter Interfaces 8: 28974–28981. doi: 10.1021/acsami.6b08032 |
[4] | Lee B , Lee S (2017) Application of hybrid supercapacitor using granule Li4Ti5O12 / activated carbon with variation of current density. J Power Sources 343: 545–549. doi: 10.1016/j.jpowsour.2017.01.094 |
[5] | Lee J, Kim H, Baek H, et al. (2016) Improved performance of cylindrical hybrid supercapacitor using activated carbon / niobium doped hydrogen titanate. J Power Sources 301: 348–354. doi: 10.1016/j.jpowsour.2015.09.113 |
[6] | Lee S, Kim J, Yoon J (2018) Laser scribed Graphene cathode for next generation of high performance hybrid supercapacitors. Scientific Reports 8: 8179–8188. doi: 10.1038/s41598-018-26503-4 |
[7] | Arslan A, Hür E (2012) Supercapacitor applications of polyaniline and poly(N-methylaniline) coated pencil graphite electrode. Int J Electrochem Sci 7: 12558–12572. |
[8] | Kulkarni SB, Patil UM, Shackery I, et al. (2014) High-performance supercapacitor electrode based on a polyaniline nanofibers / 3D graphene framework as an efficient charge transporter. J Mater Chem A2: 4989–4998. |
[9] | Liu Q, Nayfeh MH, Yau ST (2010) Supercapacitor electrodes based on polyaniline–silicon nanoparticle composite. J Power Sources 195: 3956–3959. doi: 10.1016/j.jpowsour.2009.12.042 |
[10] | Eftekhari A, Li L, Yang Y (2017) Polyaniline super capacitors. J. Power Sources 347: 86–107. doi: 10.1016/j.jpowsour.2017.02.054 |
[11] | Patil DS, Pawar SA, Devan RS, et al. (2014) Polyaniline based electrodes for electrochemical supercapacitor: Synergistic effect of silver, activated carbon and polyaniline. J Electroanal Chem 724: 21–28. doi: 10.1016/j.jelechem.2014.04.006 |
[12] | Bhadra J, Al-Thani NJ, Madi NK, et al. (2017) Effects of aniline concentrationson the electrical and mechanical properties of polyaniline polyvinyl alcohol blends. Arab J Chem 10: 664–672. doi: 10.1016/j.arabjc.2015.04.017 |
[13] | Wang G, Hu X, Wong TKS (2001) Effect of deposition current density on the effectiveness of electropolymerized hoe-transport layer in organic electroluminescent device. Appl Surface Sci 174: 185–190. doi: 10.1016/S0169-4332(01)00177-5 |
[14] | Eftekhari A, Jafarkhani P (2014) Galvanodynamic synthesis of polyaniline: a flexible method for the deposition of electroactive materials. J Electroanal Chem 717–718: 110–118. |
[15] | Jayathilake YMCD, Perera KS, Vidanapathirana KP (2015) Preparation and characterization of a polyacrylonitrile-based gel polymer electrolyte complexed with 1 methyl-3 propyl immidazolium iodide. J Solid State Electrochem 19: 2199–2204. doi: 10.1007/s10008-015-2834-7 |
[16] | Bandaranayake CM, Jayathilake YMCD, Vidanapathirana KP, et al. (2015) Performance of a sodium thiocyanate based gel polymer electrolyte in redox capacitors. Sabaragamuwa University J 14: 149–161. doi: 10.4038/suslj.v14i2.7702 |
[17] | Kumar GG, Munichandraiah N (2000) A gel polymer electrolyte of magnesium triflate. Solid State Ionics 128: 203–210. doi: 10.1016/S0167-2738(00)00276-9 |
[18] | Prasad KR, Munichandraiah N (2002) Potentiodynamically deposited polyaniline on stainless steel inexpensive, high-performance electrodes for electrochemical supercapacitors. J Electrochem Soc 149: A1393–A1399. doi: 10.1149/1.1509458 |
[19] | Tey JP, Careem MA, Yarmo MA, et al. (2016) Durian shell-based activated carbon electrode for EDLCs. Ionics 22: 1209–1217. doi: 10.1007/s11581-016-1640-2 |
[20] | Wang W, Guo S, Penchev M, et al. (2013) Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2: 294–303. |
[21] | Harankahawa N, Weerasinghe S, Vidanapathirana K, et al. (2017) Investigation of a pseudo capacitor with polyacrylonitrile based gel polymer electrolyte. J Electrochem Sci Technol 8: 107–114. |
[22] | Eftekhari A (2018) The mechanism of ultrafast supercapacitors. J Mater Chem A 6: 2866–2877. doi: 10.1039/C7TA10013B |
[23] | Prabaharan SRS, Vimala R, Zainal Z (2006) Nanostructured mesoporous carbon as electrodes for supercapacitors. J Power Sources 161: 730–736. doi: 10.1016/j.jpowsour.2006.03.074 |
[24] | Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors-progress and prospects. Electrochim Acta 101: 109–129. doi: 10.1016/j.electacta.2012.09.116 |
[25] | Bandyopadhya P, Kuila T, Balamurugan J, et al. (2017) Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. Chem Eng J 308: 1174–1184. doi: 10.1016/j.cej.2016.10.015 |
[26] | Yu T, Zhu P, Xiong Y, et al. (2016) Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochim Acta 222: 12–19. doi: 10.1016/j.electacta.2016.11.033 |
[27] | Xu J, Ding J, Zhou X, et al. (2017) Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline @ Au @ carbon nanotube with ultrafast axial electron transport. J Power Sources 340: 302–308. doi: 10.1016/j.jpowsour.2016.11.085 |
[28] | Chang W, Wang C, Chen C (2016) Plasma-Induced Polyaniline Grafted on Carbon Nanotube-embedded Carbon Nanofibers for High-Performance Supercapacitors. Electrochim Acta 212: 30–140. |
[29] | Molapo KM, Ndangili P, MAjayi RF, et al. (2012) Electronics of Conjugated Polymers (I): Polyaniline. Int J Electrochem Sci 7: 11859–11875. |
[30] | Laheäär A, Przygocki P, Abbas Q, et al. (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Com 60: 21–25. doi: 10.1016/j.elecom.2015.07.022 |
[31] | Prasad KR, Munichandraiah N (2002) Electrochemical Studies of Polyaniline in a Gel Polymer Electrolyte, High Energy and High Power Characteristics of a Solid-State Redox Supercapacitor. Electrochem Solid-State Lett 5: A271–A274. doi: 10.1149/1.1516910 |
[32] | Ryu KS, Kim KM, Park YJ, et al. (2002) Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ionics 152–153: 861–866. |
[33] | Du X, Xu Y, Xiong L, et al. (2014) Polyaniline with high crystallinity degree: Synthesis, structure, and electrochemical properties. J Appl Polym Sci 131: 6–13. |
[34] | Deshmukh PR, Shinde NM, Patil SV, et al. (2013) Supercapacitive behavior of polyaniline thin films deposited on fluorine doped tin oxide (FTO) substrates by microwave-assisted chemical route. Chem Eng J 223: 572–577. doi: 10.1016/j.cej.2013.03.056 |