Citation: Shouyun Cheng, Lin Wei, Xianhui Zhao, Yinbin Huang, Douglas Raynie, Changling Qiu, John Kiratu, Yong Yu. Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor[J]. AIMS Energy, 2015, 3(2): 227-240. doi: 10.3934/energy.2015.2.227
[1] | Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energy Rev 12:504-517. doi: 10.1016/j.rser.2006.07.014 |
[2] | Yue DJ, You FQ, Seth W (2014) Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers Chem Eng 66: 36-56. doi: 10.1016/j.compchemeng.2013.11.016 |
[3] | Boe A, Owens V, Gonzalez-Hernandez J, et al. (2009) Morphology and biomass production of prairie grass on marginal lands. GCB Bioenergy 1: 240-250. doi: 10.1111/j.1757-1707.2009.01018.x |
[4] | Zhang Q, Chang J, Wang T, et al. (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manage 48: 87-92. doi: 10.1016/j.enconman.2006.05.010 |
[5] | Wang L, Lei HW, John L, et al. (2013) Aromatic hydrocarbons production from packed-bed catalysis coupled with microwave pyrolysis of Douglas fir sawdust pellets. RSC Advances 3: 14609-14615. doi: 10.1039/c3ra23104f |
[6] | Wang L, Lei HW, Bu Q, et al. (2014) Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel 129: 78-85. doi: 10.1016/j.fuel.2014.03.052 |
[7] | Biddy MJ, Dutta A, Jones SB, et al. (2013) Ex-situ catalytic fast pyrolysis technology pathway. Pacific Northwest National Laboratory, Richland, WA. Available from: http://www.pnl. gov/main/publications/external/technical_reports/PNNL-22317.pdf. |
[8] | Huang YB, Wei L, Julson J, et al. (2015) Converting pine sawdust to advanced biofuel over HZSM-5 using a two-stage catalytic pyrolysis reactor. J Anal Appl Pyrol 111: 148-155. doi: 10.1016/j.jaap.2014.11.019 |
[9] | Park HJ, Dong JI, Jeon JK, et al. (2007) Conversion of the pyrolytic vapor of radiata pine over zeolite. J Ind Eng Chem 13: 182-189. |
[10] | Mullen CA, Boateng AA, Mihalcik DJ, et al. (2011) Catalytic fast pyrolysis of white oak wood in a bubbling fluidized bed. Energy Fuels 25: 5444-5451. doi: 10.1021/ef201286z |
[11] | Adjaye JD, Bakhshi NN (1995) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. Fuel Process Technol 45:161-183. |
[12] | Stefanidis SD, Kalogiannis KG, Iliopoulou EF, et al. (2011) In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Bioresource Technol 102: 8261-8267. doi: 10.1016/j.biortech.2011.06.032 |
[13] | Lu Q, Zhu X, Li W, et al. (2009) On-line catalytic upgrading of biomass fast pyrolysis products. Chinese Science Bulletin 54: 1941-1948. doi: 10.1007/s11434-009-0273-5 |
[14] | Zhao Y, Deng L, Liao B, et al. (2010) Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil. Energy Fuels 24: 5735-5740. doi: 10.1021/ef100896q |
[15] | Adjaye JD, Sharma RK, Bakhshi NN. (1992) Catalytic conversion of wood derived bio-oil to fuels and chemicals. Stud Surf Sci Catal 73: 301-308. doi: 10.1016/S0167-2991(08)60828-9 |
[16] | Lu Q, Zhang ZF, Dong CQ. (2010) Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study. Energies 3:1805-1820. doi: 10.3390/en3111805 |
[17] | Fanchiang W L, Lin YC.(2012) Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Appl Catalysis A: General 419:102-110. |
[18] | Campanella A, Harold MP. (2012) Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts. Biomass Bioenergy 46:218-232. doi: 10.1016/j.biombioe.2012.08.023 |
[19] | Neumann G, Hicks J. (2012) Effects of cerium and aluminum in cerium-containing hierarchical HZSM-5 catalysts for biomass upgrading. Top Catal 55:196-208. doi: 10.1007/s11244-012-9788-0 |
[20] | Thangalazhy-Gopakumar S, Adhikari S, Gupta RB. (2012) Catalytic pyrolysis of biomass over H+ ZSM-5 under hydrogen pressure. Energy Fuels 26: 5300-5306. doi: 10.1021/ef3008213 |
[21] | Hong C, Gong F, Fan M, et al. (2013) Selective production of green light olefins by catalytic conversion of bio-oil with Mg/HZSM-5 catalyst. J Chem Technol Biot 88:109-118. doi: 10.1002/jctb.3861 |
[22] | Yang Y, Sun C, Du J, et al. (2012) The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catalysis Communications 24: 44-47. doi: 10.1016/j.catcom.2012.03.013 |
[23] | Rhee HK, Nam IS, Park JM, (2006) New Developments and Application in Chemical Reaction Engineering: Proceedings of the 4th Asia-Pacific Chemical Reaction Engineering Symposium (APCRE'05), Gyeongju, Korea, 2005 (Vol. 159). |
[24] | Valle B, Gayubo AG, Aguayo AT, et al. (2010) Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst. Energy Fuels 24: 2060-2070. doi: 10.1021/ef901231j |
[25] | Mani T, Murugan P, Abedi J, et al. (2010). Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem Eng Res Design 88: 952-958. doi: 10.1016/j.cherd.2010.02.008 |
[26] | Kong X, Liu J. (2014). Influence of Alumina Binder Content on Catalytic Performance of Ni/HZSM-5 for Hydrodeoxygenation of Cyclohexanone. PloS one, 9: e101744. |
[27] | Lin X, Fan Y, Shi G. (2007). Coking and deactivation behavior of HZSM-5 zeolite-based FCC gasoline hydro-upgrading catalyst. Energy Fuels, 21: 2517-2524. doi: 10.1021/ef0700634 |
[28] | Shun T, Zhang Z, Sun JP, et al. (2013) Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese J Catalysis 34: 641-650. doi: 10.1016/S1872-2067(12)60531-2 |
[29] | Bertero M, Puente G, Sedran U. (2012) Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 95: 263-271. doi: 10.1016/j.fuel.2011.08.041 |
[30] | Mortensen PM, Grunwaldt JD, Jensen PA, et al. (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catalysis A: General 07: 1-19. |
[31] | Iliopoulou EF, Stefanidis SD, Kalogiannis KG, et al. (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catalysis B: Environ 127: 281-290. doi: 10.1016/j.apcatb.2012.08.030 |
[32] | Valle B, Gayubo AG, Alonso A, et al. (2010) Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons. Appl Catalysis B: Environ 100: 318-327. doi: 10.1016/j.apcatb.2010.08.008 |
[33] | Atutxa A, Aguado R, Gayubo AG, et al. (2005) Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy Fuels 19: 765-774. doi: 10.1021/ef040070h |
[34] | Mohan D, Pittman CU, Steele PH. (2006) Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 20: 848-889. doi: 10.1021/ef0502397 |
[35] | Ertaş M, Alma MH (2010) Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a fixed-bed reactor: Characterization of bio-oil and bio-char. J Anal Appl Pyrol 88: 22-29. |
[36] | Verma M, Godbout S, Brar SK, et al. (2012) Biofuels Production from Biomass by Thermochemical Conversion Technologies. Int J Chem Eng 2012:1-18. |