Citation: Patrick Moriarty, Damon Honnery. Energy policy and economics under climate change[J]. AIMS Energy, 2018, 6(2): 272-290. doi: 10.3934/energy.2018.2.272
[1] | Pearce F (2017) We could pass 1.5 °C warming by 2026. New Sci 234: 10. |
[2] | Anderson K (2015) Duality in climate science. Nat Geosci 8: 898–900. doi: 10.1038/ngeo2559 |
[3] | Xu Y, Ramanathan V (2017) Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes. PNAS 114: 10315–10323. doi: 10.1073/pnas.1618481114 |
[4] | Anonymous (2017) Climate health threat. New Sci 236: 4. |
[5] | Peters GP, Le Quéré C, Andrew RM, et al. (2017) Towards real-time verification of CO2 emissions. Nat Clim Change 7: 848–850. doi: 10.1038/s41558-017-0013-9 |
[6] | International Energy Agency (IEA) (2017) World Energy Outlook, 2017. Paris. |
[7] | Cook J, Oreskes N, Doran PT, et al. (2016) Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environ Res Lett 11: 048002. doi: 10.1088/1748-9326/11/4/048002 |
[8] | Intergovernmental Panel on Climate Change (IPCC) (2015) Climate Change 2014: Synthesis Report. Cambridge UK, CUP. |
[9] | Schindler J (2014) The availability of fossil energy resources, In: Angrick M, Burger A, Lehmann H, Author, Factor X: Policy, Strategies and Instruments for a Sustainable Resource Use, 2 Eds., Netherlands: Springer, 19–38. |
[10] | Wang J, Feng L, Tang X, et al. (2017) The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis. Futures 86: 58–72. doi: 10.1016/j.futures.2016.04.007 |
[11] | Jacobson MZ, Delucchi MA, Cameron MA, et al. (2015) Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. PNAS 112:15060–15065. doi: 10.1073/pnas.1510028112 |
[12] | Van Vuuren DP, Stehfest E, Elzen MG, et al. (2011) RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim Change 109: 95–116. |
[13] | Sanchez DL, Nelson JH, Johnston J, et al. (2015) Biomass enables the transition to a carbon negative power system across western North America. Nat Clim Change 5: 230–234. doi: 10.1038/nclimate2488 |
[14] | Creutzig F, Agoston P, Goldschmidt JC, et al. (2017) The underestimated potential of solar energy to mitigate climate change. Nat Energy 2: 1–9. |
[15] | Miller LM, Kleidon A (2016) Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits. PNAS 113: 13570–13575. doi: 10.1073/pnas.1602253113 |
[16] | Moriarty P, Honnery D (2011) Is there an optimum level for renewable energy? Energ Policy 39: 2748–2753. |
[17] | Moriarty P, Honnery D (2012) What is the global potential for renewable energy? Renew Sust Energ Rev 16: 244–252. doi: 10.1016/j.rser.2011.07.151 |
[18] | Moriarty P, Honnery D (2017) Sustainable energy resources: Prospects and policy, In: Rasul MG, Author, Clean Energy For Sustainable Development, 1 Eds., London: Elsevier. |
[19] | Trainer T (2017) Can renewables meet total Australian energy demand: A "disaggregated" approach. Energ Policy 109: 539–544. doi: 10.1016/j.enpol.2017.07.040 |
[20] | Clack CTM, Qvist SA, Apt J, et al. (2017) Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. PNAS 114: 6722–6727. doi: 10.1073/pnas.1610381114 |
[21] | de Castro C, Mediavilla M, Miguel LJ, et al. (2011) Global wind power potential: Physical and technological limits. Energ Policy 39: 6677–6682. doi: 10.1016/j.enpol.2011.06.027 |
[22] | de Castro C, Mediavilla M, Miguel LJ, et al. (2013) Global solar electric potential: A review of their technical and sustainable limits. Renew Sust Energ Rev 28: 824–835. doi: 10.1016/j.rser.2013.08.040 |
[23] | de Castro C, Carpintero O, Frechoso F, et al. (2014) A top-down approach to assess physical and ecological limits of biofuels. Energy 64: 506–512. doi: 10.1016/j.energy.2013.10.049 |
[24] | Heard BP, Brook BW, Wigley TML, et al. (2017) Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew Sust Energ Rev 76: 1122–1133. doi: 10.1016/j.rser.2017.03.114 |
[25] | Espinosa N, Hosel M, Angmo D, et al. (2012) Solar cells with one-day energy payback for the factories of the future. Energy Environ Sci 5: 5117–5132. doi: 10.1039/C1EE02728J |
[26] | Moriarty P, Honnery D (2016) Can renewable energy power the future? Energ Policy 93: 3–7. doi: 10.1016/j.enpol.2016.02.051 |
[27] | Weißbach D, Ruprecht G, Huke A, et al. (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52: 210–221. doi: 10.1016/j.energy.2013.01.029 |
[28] | Ferroni F, Hopkirk RJ (2016) Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energ Policy 94: 336–344. doi: 10.1016/j.enpol.2016.03.034 |
[29] | Dale M, Benson SM (2013) Energy balance of the global photovoltaic (PV) industry-Is the PV industry a net electricity producer? Environ Sci Technol 47: 3482−3489. |
[30] | Louwen A, van Sark WGJHM, Faaij APC, et al. (2016) Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat Commun 7: 13728. doi: 10.1038/ncomms13728 |
[31] | Smil V (2012) A skeptic looks at alternative energy. IEEE Spectrum 49: 46–52. |
[32] | Smil V (2016) Examining energy transitions: A dozen insights based on performance. Energy Res Soc Sci 4: 194–197. |
[33] | Grubler A, Wilson C, Nemet G (2016) Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions. Energy Res Soc Sci 22: 18–25. doi: 10.1016/j.erss.2016.08.015 |
[34] | Pickard WF (2014) Smart grids versus the Achilles' Heel of renewable energy: Can the needed storage infrastructure be constructed before the fossil fuel runs out? Proc IEEE 102: 1094–1105. doi: 10.1109/JPROC.2014.2316359 |
[35] | Davidsson S, Grandell L, Wachtmeister H, et al. (2014) Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy. Energ Policy 73: 767–776. doi: 10.1016/j.enpol.2014.05.003 |
[36] | Sovacool BK (2016) How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res Soc Sci 13: 202–215. |
[37] | Sioshansi FP (2009) De-carbonizing electricity generation: It won't be easy, cheap, nor enough. Util Policy 17: 217–224. doi: 10.1016/j.jup.2009.04.001 |
[38] | Ackerman F, Stanton EA (2012) Climate risks and carbon prices: revising the social cost of carbon. Economics 6: 1–25. |
[39] | Weitzman ML (2014) Fat tails and the social cost of carbon. Am Econ Rev 104: 544–546. doi: 10.1257/aer.104.5.544 |
[40] | Nordhaus WD (2017) Revisiting the social cost of carbon. PNAS 114: 1518–1523. doi: 10.1073/pnas.1609244114 |
[41] | Marshall M (2013) Transforming earth. New Sci 12: 10–11. |
[42] | Griscom BW, Adams J, Ellis PW, et al. (2017) Natural climate solutions. PNAS 114: 11645–11650. doi: 10.1073/pnas.1710465114 |
[43] | Smith LJ, Torn MS (2013) Ecological limits to terrestrial biological carbon dioxide removal. Clim Change 118: 89–103. doi: 10.1007/s10584-012-0682-3 |
[44] | Keller DP, Feng EY, Oschlies A (2014) Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat Commun 5: 3304. |
[45] | Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nat Geosci 4: 514–518. doi: 10.1038/ngeo1182 |
[46] | Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Nat Acad Sci 109: 10164–10168. doi: 10.1073/pnas.1202473109 |
[47] | Socolow RH, Desmond MJ (2011) Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. Am Phys Soc. |
[48] | Honegger M, Reiner D (2017) The political economy of negative emissions technologies: Consequences for international policy design. Clim Policy 2017: 1–16. |
[49] | Moriarty P, Honnery D (2011) Rise and Fall of the Carbon Civilisation. London: Springer. |
[50] | Moriarty P, Honnery D (2010) A hydrogen standard for energy accounting? Int J Hydrogen Energy 35: 12374–12380. doi: 10.1016/j.ijhydene.2010.08.060 |
[51] | BP (2017) BP Statistical Review of World Energy. London, BP. Available from: https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf . |
[52] | International Energy Agency (IEA) (2017) Key World Energy Statistics 2017. Paris, IEA/OECD. |
[53] | Schaps C (2015) Royal Dutch Shell pulls plug on Arctic exploration. Available from: https://www.reuters.com/article/us-shell-alaska/royal-dutch-shell-pulls-plug-on-arctic-exploration-idUSKCN0RS0EX20150928. |
[54] | Taylor LL, Quirk J, Thorley RMS, et al. (2016) Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat Clim Change 6: 402–406. doi: 10.1038/nclimate2882 |
[55] | Service RF (2016) Cost of carbon capture drops, but does anyone want it? Science 354: 1362–1363. doi: 10.1126/science.354.6318.1362 |
[56] | Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: Capacity and regulatory implications. Int J Greenh Gas Control 3: 745–756. doi: 10.1016/j.ijggc.2009.07.002 |
[57] | Elliot TR, Celia MA (2012) Potential restrictions for CO2 sequestration sites due to shale and tight gas production. Environ Sci Technol 46: 4223–4227. doi: 10.1021/es2040015 |
[58] | Coady D, Parry I, Sears S, et al. (2015) How large are global energy subsidies? IMF Working Paper. Available from: https://www.imf.org/external/pubs/ft/wp/2015/wp15105.pdf. |
[59] | Baranzini A, van den Bergh JCJM, Carattini S, et al. (2017) Carbon pricing in climate policy: Seven reasons, complementary instruments, and political economy considerations. WIREs Clim Change 8: e462. doi: 10.1002/wcc.462 |
[60] | Eisenstein (2017) The needs of the many. Nature 551: 142–144. doi: 10.1038/551142a |
[61] | United Nations (UN) (2017) World Population Prospects: The 2017 Revision. Available from: https://esa.un.org/unpd/wpp/Download/Standard/Population/. |
[62] | Lovins AB (2010) Profitable solutions to climate, oil, and proliferation. Ambio 39: 236–248. doi: 10.1007/s13280-010-0031-6 |
[63] | Cullen JM, Allwood JM, Borgstein EH (2011) Reducing energy demand: What are the practical limits? Environ Sci Technol 45: 1711–1718. doi: 10.1021/es102641n |
[64] | Dray LM, Schafer A, Ben-Akiva ME (2012) Technology limits for reducing EU transport sector CO2 emissions. Environ Sci Technol 46: 4734–4741. doi: 10.1021/es204301z |
[65] | Organization of the Petroleum Exporting Countries (OPEC) 2016 World Oil Outlook. Vienna, Austria, OPEC. |
[66] | Desroches LB, Garbesi K, Yang HC, et al. (2013) Trends in the cost of efficiency for appliances and consumer electronics. ECEEE Summer Study Proc 1751–1758. |
[67] | Weiss M, Patel MK, Junginger M, et al. (2010) Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energ Policy 38: 770–783. doi: 10.1016/j.enpol.2009.10.022 |
[68] | Moriarty P, Honnery D (2017) Non-technical factors in household energy conservation, In: Chen WY, Suzuki T, Lackner T, Authors, Handbook of Climate Change Mitigation and Adaptation, 2Eds., New York: Springer. |
[69] | Sorrell S (2015) Reducing energy demand: A review of issues, challenges and approaches. Renew Sustain Energy Rev 47: 74–82. doi: 10.1016/j.rser.2015.03.002 |
[70] | Breukers S, Mourik R, Heiskanen E (2013) Changing energy demand behavior: Potential of demand-side management, In: Kauffman L, Lee KM, Handbook of Sustainable Engineering, Eds., Netherlands: Springer, 773–792. |
[71] | Akerlind I, Freed J (2014) Nuclear energy renaissance set to move ahead without U.S. Third Way Clean Energy Program. Available from: https://www.thirdway.org/report/nuclear-energy-renaissance-set-to-move-ahead-without-u-s. |
[72] | Rogner M, Riahi K (2013) Future nuclear perspectives based on MESSAGE integrated assessment modeling. Energy Strategy Rev 1: 223–232. doi: 10.1016/j.esr.2013.02.006 |
[73] | Energy Information Administration (EIA) (2017) International Energy Outlook 2017. US Dept. of Energy. Available from: https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf. |
[74] | BP (2017) BP Energy Outlook 2035. London, BP. |
[75] | Anonymous (2017) France could close "up to 17" nuclear reactors by 2025. Available from: http://www.france24.com/en/20170710-france-hulot-could-close-nuclear-plantshttp://www.france24.com/en/20170710-france-hulot-could-close-nuclear-plants. |
[76] | Normile D (2017) South Korea's nuclear U-turn draws praise and darts. Science 356: 15. doi: 10.1126/science.356.6333.15 |
[77] | Grossman L (2017) Nuclear holiday. New Sci 20 May: 20–21. |
[78] | Koomey J, Hultman NE, Grubler A (2017) A reply to "Historical construction costs of global nuclear power reactors". Energ Policy 102: 640–643. doi: 10.1016/j.enpol.2016.03.052 |
[79] | Hoogwijk M, Faaij A, van den Broek R, et al. (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenerg 25: 119–133. doi: 10.1016/S0961-9534(02)00191-5 |
[80] | Abbasi T, Abbasi SA (2012) Is the use of renewable energy sources an answer to the problems of global warming and pollution? Crit Rev Environ Sci Technol 42: 99–154. doi: 10.1080/10643389.2010.498754 |
[81] | Smith P, Davis SJ, Creutzig F, et al. (2016) Biophysical and economic limits to negative CO2 emissions. Nat Clim Change 6: 42–50. doi: 10.1038/nclimate2870 |
[82] | Weißbach D, Ruprecht G, Huke A, et al. (2014) Reply on "Comments on 'Energy intensities, EROEIs (energy returned on invested), and energy payback times of electricity generating power plants'-Making clear of quite some confusion". Energy 68: 1004–1006. doi: 10.1016/j.energy.2014.02.026 |
[83] | Raugei M (2013) Comments on "Energy intensities, EROEIs (energy returned on invested), and energy payback times of electricity generating power plants"-Making clear of quite some confusion. Energy 59: 781–782. doi: 10.1016/j.energy.2013.07.032 |
[84] | Raugei M, Carbajales-Dale M, Barnhart CJ, et al. (2015) Rebuttal: "Comments on 'Energy intensities, EROEIs (energy returned on invested), and energy payback times of electricity generating power plants'-Making clear of quite some confusion". Energy 82: 1088–1091. doi: 10.1016/j.energy.2014.12.060 |
[85] | McGlade C, Ekins P (2015) The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517: 187–190. doi: 10.1038/nature14016 |
[86] | Höök M, Li J, Johansson K, et al. (2012) Growth rates of global energy systems and future outlooks. Nat Resour Res 21: 23–41. doi: 10.1007/s11053-011-9162-0 |
[87] | Le Page M (2017) The green revolution is stalling. New Sci 5: 22–23. |
[88] | Moriarty P, Honnery D (2011) Energy availability problems with rapid deployment of wind-hydrogen systems. Int J Hydrog Energy 36: 3283–3289. doi: 10.1016/j.ijhydene.2010.12.023 |
[89] | Smith KA, Mosier AR, Crutzen PJ, et al. (2012) The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate. Phil Trans Roy Soc B 367: 1169–1174. doi: 10.1098/rstb.2011.0313 |
[90] | Battye W, Aneja VP, Schlesinger WH (2017) Is nitrogen the next carbon? Earth's Future 5: 894–904. doi: 10.1002/2017EF000592 |
[91] | Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14: 140–146. doi: 10.1016/j.tplants.2008.12.006 |
[92] | Searchinger TD, Estes L, Thornton PK, et al. (2015) High carbon and biodiversity costs from converting Africa's wet savannahs to cropland. Nat Clim Change 5: 481–486. |
[93] | Hein L, Leemans R (2012) The impact of first-generation biofuels on the depletion of the global phosphorus reserve. Ambio 41: 341–349. doi: 10.1007/s13280-012-0253-x |
[94] | Moriarty P, Honnery D (2017) Assessing the climate mitigation potential of biomass. AIMS Energy 5: 20–38. |
[95] | Liska AJ, Yang H, Milner M, et al. (2014) Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nat Clim Change 4: 398–401. |
[96] | Zhao G, Bryan BA, King D, et al. (2015) Sustainable limits to crop residue harvest for bioenergy: Maintaining soil carbon in Australia's agricultural lands. Glob Change Biol Bioenerg 7: 479–487. doi: 10.1111/gcbb.12145 |
[97] | Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Bioenergy Conf 65: 3–12. |
[98] | Edenhofer O, Pichs-Madruga R, Sokona Y, et al. (2014) Climate Change 2014: Mitigation of Climate Change. Cambridge UK, CUP. |
[99] | Schramski JR, Gattie DK, Brown JH (2015) Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind. PNAS 112: 9511–9517. doi: 10.1073/pnas.1508353112 |
[100] | Capellán-Pérez I, de Castro C, Arto I (2017) Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew Sust Energ Rev 77: 760–782. |
[101] | Hanning C, Evans A (2012) Wind Turbine noise: Seems to affect health adversely and an independent review of evidence is needed. BMJ 344: e1527. doi: 10.1136/bmj.e1527 |
[102] | Barros JJC, Coira ML, Pilar de la Cruz Lopez M, et al. (2015) Assessing the global sustainability of different electricity generation systems. Energy 89: 473–489. doi: 10.1016/j.energy.2015.05.110 |
[103] | Campbell JE, Lobell DB, Field CB (2009) Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 324: 1055–1057. doi: 10.1126/science.1168885 |
[104] | Steffen W, Richardson K, Rockström J, et al. (2015) Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855. doi: 10.1126/science.1259855 |
[105] | Moriarty P, Honnery D (2015) Reliance on technical solutions to environmental problems: Caution is needed. Environ Sci Technol 49: 5255−5256. |
[106] | Li X, Wagner F, Peng W, et al. (2017) Reduction of solar photovoltaic resources due to air pollution in China. PNAS 114: 11867–11872. doi: 10.1073/pnas.1711462114 |
[107] | Stocker TF, Qin D, Plattner GK, et al. (2013) Climate Change 2013: The Physical Science Basis. J Chem Inf Model 53: 1689–1699. doi: 10.1021/ci400128m |
[108] | van den Bergh J, Folke C, Polasky S, et al. (2015) What if solar energy becomes really cheap? A thought experiment on environmental problem shifting. Curr Opin Env Sust 14: 170–179. |
[109] | Andersen O (2013) Unintended consequences of renewable energy: Problems to be solved. London: Springer. |
[110] | Moriarty P, Honnery D (2018) Three futures: Nightmare, diversion, vision. World Futures 74: 51–67. doi: 10.1080/02604027.2017.1357930 |
[111] | Kallis G (2017) Radical dematerialization and degrowth. Phil Trans R Soc A 375: 20160383. doi: 10.1098/rsta.2016.0383 |
[112] | Schindler DE, Hilborn R (2015) Prediction, precaution, and policy under global change. Science 347: 953–954. doi: 10.1126/science.1261824 |
[113] | Taleb NN, Bar-Yam Y, Douady R, et al. (2014) The precautionary principle: Fragility and black swans from policy actions. NYU Extreme Risk Initiative Working Paper, 1–24. |