Research article Special Issues

Polynomial approximations of the Normal toWeibull Distribution transformation

  • Received: 01 July 2014 Accepted: 04 September 2014 Published: 29 September 2014
  • Some of the tools that are generally employed in power system analysis need to use approaches based on statistical distributions for simulating the cumulative behavior of the different system devices. For example, the probabilistic load flow. The presence of wind farms in power systems has increased the use of Weibull and Rayleigh distributions among them. Not only the distributions themselves, but also satisfying certain constraints such as correlation between series of data or even autocorrelation can be of importance in the simulation. Correlated Weibull or Rayleigh distributions can be obtained by transforming correlated Normal distributions, and it can be observed that certain statistical values such as the means and the standard deviations tend to be retained when operating such transformations, although why this happens is not evident. The objective of this paper is to analyse the consequences of using such transformations. The methodology consists of comparing the results obtained by means of a direct transformation and those obtained by means of approximations based on the use of first and second degree polynomials. Simulations have been carried out with series of data which can be interpreted as wind speeds. The use of polynomial approximations gives accurate results in comparison with direct transformations and provides an approach that helps explain why the statistical values are retained during the transformations.

    Citation: Andrés Feijóo, Daniel Villanueva. Polynomial approximations of the Normal toWeibull Distribution transformation[J]. AIMS Energy, 2014, 2(4): 342-358. doi: 10.3934/energy.2014.4.342

    Related Papers:

  • Some of the tools that are generally employed in power system analysis need to use approaches based on statistical distributions for simulating the cumulative behavior of the different system devices. For example, the probabilistic load flow. The presence of wind farms in power systems has increased the use of Weibull and Rayleigh distributions among them. Not only the distributions themselves, but also satisfying certain constraints such as correlation between series of data or even autocorrelation can be of importance in the simulation. Correlated Weibull or Rayleigh distributions can be obtained by transforming correlated Normal distributions, and it can be observed that certain statistical values such as the means and the standard deviations tend to be retained when operating such transformations, although why this happens is not evident. The objective of this paper is to analyse the consequences of using such transformations. The methodology consists of comparing the results obtained by means of a direct transformation and those obtained by means of approximations based on the use of first and second degree polynomials. Simulations have been carried out with series of data which can be interpreted as wind speeds. The use of polynomial approximations gives accurate results in comparison with direct transformations and provides an approach that helps explain why the statistical values are retained during the transformations.


    加载中
    [1] [ Freris, L. L. (1990) Wind energy conversion systems. Prentice Hall.
    [2] [ Kavasseri, R. J. (2004) Evidence of crossover phenomena in wind-speed data. IEEE Transac- tions on Circuits and Systems I: Fundamental Theory and Applications, Volume 51, 2255-2262.
    [3] [ Damousis, I. G., Alexiadis, M. C., Theocharis, J. B., Dokopoulos, P. S. (2004) A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Transactions on Energy Conversion, Volume 19, 352-361.
    [4] [ Brown, B. G., Katz, R. W., Murphy, A. H. (1984) Time series models to simulate and forecast wind speed and wind power. Journal of Climate and Applied Meteorology, Volume 23, 1184-1195.
    [5] [ Song, W. T., Hsiao, L. C. (1993) Generation of autocorrelated random variables with a speci ed marginal distribution. Proceedings of the Winter Simulation Conference, 374-377.
    [6] [ Feijóo, A., Villanueva, D., Pazos, J. L., Sobolewski, R. (2011) Simulation of correlated wind speeds. A review. Renewable and Sustainable Energy Reviews, Volume 15, 2826-2832.
    [7] [ Correia, P. F., Ferreira de Jesus, J. M. (2010) Simulation of correlated wind speeds and power variates in wind parks. Electric Power Systems Research, Volume 80, 592-598.
    [8] [ Segura-Heras, I., Escrivá-Escrivá, G., Alcázar-Ortega, M. (2011) Wind farm electrical power production model for load flow analysis. Renewable Energy, Volume 36, 1008-1013.
    [9] [ Karaki, S. H., Salim, B. A., Chedid, R. B. (2002) Probabilistic model of a two site wind energy conversion system. IEEE Transactions on Energy Conversion Volume 17, 530-536.
    [10] [ Young, D. J., Beaulieu, N. C. (2000) The generation of correlated Rayleigh random variates by inverse discrete Fourier transform. IEEE Transactions on Communications, Volume 48, 1114- 1127.
    [11] [ Huang, Z., Chalabi, Z. S. (1995) Use of time-series analysis to model and forecast wind speed. Journal of Wind Engineering and Industrial Aerodynamics Volume 56, 311-322.
    [12] [ Shamshad, A., Bawadi, M. A., Wan Hussin, W. M. A., et al. (2005) First and second order Markov chain models for synthetic generation of wind speed time series. Energy Volume 30, 693-708.
    [13] [ Villanueva, D., Feijóo, A., Pazos, J. L. (2012) Simulation of correlated wind speed data for Economic Dispatch Evaluation. IEEE Transactions on Sustainable Energy, Volume 3, 142-149.
    [14] [ Feijóo, A., Cidrás, J., Dornelas, J. L. G. (1999) Wind speed simulation in wind farms for steady-state security assessment of electrical power systems. IEEE Transactions on Energy Con- version, Volume 3, 1582-1588.
    [15] [ Feijóo, A., Sobolewski, R. (2009) Simulation of correlated wind speeds. International Journal of Electrical Energy Systems, Volume 1, 99-106.
    [16] [ Carta, J. A., Ramírez, P., Velázquez, S. (2009) A review of wind speed probability distribu- tions used in wind energy analysis. Case studies in the Canary Islands. Renewable and Sustainable Energy Reviews Volume 13, 933-955.
    [17] [ Dialynas, E. N., Machias, A. V. (1989) Reliability modelling interactive techniques of power systems including wind generating units. Archive fur Elektrotechnik, Volume 72, 33-41.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4433) PDF downloads(938) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog