Citation: Thomas Schubert, Gernot Längst. Studying epigenetic interactions using MicroScale Thermophoresis (MST)[J]. AIMS Biophysics, 2015, 2(3): 370-380. doi: 10.3934/biophy.2015.3.370
[1] |
Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839: 627-643. doi: 10.1016/j.bbagrm.2014.03.001
![]() |
[2] |
Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer 11: 726-734. doi: 10.1038/nrc3130
![]() |
[3] |
Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25: 2436-2452. doi: 10.1101/gad.179184.111
![]() |
[4] |
Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693-705. doi: 10.1016/j.cell.2007.02.005
![]() |
[5] |
Tan M, Luo H, Lee S, et al. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146: 1016-1028. doi: 10.1016/j.cell.2011.08.008
![]() |
[6] |
Zhang G, Pradhan S (2014) Mammalian epigenetic mechanisms. IUBMB Life 66: 240-256. doi: 10.1002/iub.1264
![]() |
[7] |
Baaske P, Wienken CJ, Reineck P, et al. (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Engl 49: 2238-2241. doi: 10.1002/anie.200903998
![]() |
[8] |
Seidel SA, Dijkman PM, Lea WA, et al. (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59: 301-315. doi: 10.1016/j.ymeth.2012.12.005
![]() |
[9] |
Seidel SA, Wienken CJ, Geissler S, et al. (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angew Chem Int Ed Engl 51: 10656-10659. doi: 10.1002/anie.201204268
![]() |
[10] |
Wienken CJ, Baaske P, Rothbauer U, et al. (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1: 100. doi: 10.1038/ncomms1093
![]() |
[11] |
Jerabek-Willemsen M, André T, Wanner R, et al. (2014) MicroScale Thermophoresis: Interaction analysis and beyond. J Mol Struct 1077: 101-113. doi: 10.1016/j.molstruc.2014.03.009
![]() |
[12] |
Jerabek-Willemsen M, Wienken CJ, Braun D, et al. (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9: 342-53. doi: 10.1089/adt.2011.0380
![]() |
[13] | Duhr S, Baaske P (2013) Microscale Thermophoresis: Immobilization-free Binding Assays. GIT Laboratory J. Available from: http://www.laboratory-journal.com/applications/biological-methods/microscale-thermophoresis-immobilization-free-binding-assays. |
[14] |
Diermeier SD, Németh A, Rehli M, et al. (2013) Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites. PLoS Genet 9: e1003786. doi: 10.1371/journal.pgen.1003786
![]() |
[15] |
Timofeeva OA, Chasovskikh S, Lonskaya I, et al. (2012) Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J Biol Chem 287: 14192-14200. doi: 10.1074/jbc.M111.323899
![]() |
[16] |
Gjerstorff MF, Relster MM, Greve KBV, et al. (2014) SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression. Nucleic Acids Res 42: 11433-11446 doi: 10.1093/nar/gku852
![]() |
[17] |
Posse V, Hoberg E, Dierckx A, et al. (2014) The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation. Nucleic Acids Res 42: 3638-3647. doi: 10.1093/nar/gkt1397
![]() |
[18] |
Silvers R, Saxena K, Kudlinzki D, et al. (2012) Recombinant expression and purification of human TATA binding protein using a chimeric fusion. Protein Expr Purif 85: 142-147. doi: 10.1016/j.pep.2012.07.006
![]() |
[19] |
Pham TH, Minderjahn J, Schmidl C, et al. (2013) Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res 41: 6391-6402. doi: 10.1093/nar/gkt355
![]() |
[20] |
Schubert T, Pusch MC, Diermeier S, et al. (2012) Df31 protein and snoRNAs maintain accessible higher-order structures of chromatin. Mol Cell 48: 434-444. doi: 10.1016/j.molcel.2012.08.021
![]() |
[21] |
Wang Y, Fischle W, Cheung W, et al. (2004) Beyond the double helix: writing and reading the histone code. Novartis Found Symp 259: 3-17; discussion 17-21, 163-169. doi: 10.1002/0470862637.ch2
![]() |
[22] |
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1080. doi: 10.1126/science.1063127
![]() |
[23] |
Taverna SD, Li H, Ruthenburg AJ, et al. (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14: 1025-1040. doi: 10.1038/nsmb1338
![]() |
[24] | Southall SM, Cronin NB, Wilson JR (2013) A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Nucleic Acids Res 42: 661-671. |
[25] | Guo R, Zheng L, Park J, et al. (2014) BS69/ZMYND11 reads and connects histone h3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mrna processing. Mol Cell 56: 298-310. |
[26] |
Greer E, Beese-Sims S, Brookes E, et al. (2014) A Histone Methylation Network Regulates Transgenerational Epigenetic Memory in C. elegans. Cell Reports 7: 113-126. doi: 10.1016/j.celrep.2014.02.044
![]() |
[27] |
Allam R, Scherbaum CR, Darisipudi MN, et al. (2012) Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4. J Am Soc Nephrol 23: 1375-1388. doi: 10.1681/ASN.2011111077
![]() |
[28] |
Alpatov R, Lesch B, Nakamoto-Kinoshita M, et al. (2014) A Chromatin-Dependent Role of the Fragile X Mental Retardation Protein FMRP in the DNA Damage Response. Cell 157: 869-881. doi: 10.1016/j.cell.2014.03.040
![]() |
[29] |
Josling GA, Petter M, Oehring SC, et al. (2015) A plasmodium falciparum bromodomain protein regulates invasion gene expression. Cell Host Microbe 17: 741-751. doi: 10.1016/j.chom.2015.05.009
![]() |
[30] |
Tan Z, Wortman M, Dillehay KL, et al. (2012) Small molecule targeting of PCNA chromatin association inhibits tumor cell growth. Mol Pharmacol 81: 811-819. doi: 10.1124/mol.112.077735
![]() |
[31] |
Zheng YC, Duan YC, Ma JL, et al. (2013) Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. J Med Chem 56: 8543-8560. doi: 10.1021/jm401002r
![]() |