Citation: Carsten Sachse. Single-particle based helical reconstruction—how to make the most of real and Fourier space[J]. AIMS Biophysics, 2015, 2(2): 219-244. doi: 10.3934/biophy.2015.2.219
[1] | De Rosier D, Klug A (1968) Reconstruction of Three Dimensional Structures from Electron Micrographs. Nature 217: 130-134. doi: 10.1038/217130a0 |
[2] | Cochran W, Crick FHC, Vand V (1952) The Structure of Synthetic Polypeptides. I. The Transform of Atoms on a Helix. Acta Crystallographica 5: 581-586. |
[3] | Franklin RE, Klug A (1955) The splitting of layer lines in X-ray fibre diagrams of helical structures: application to tobacco mosaic virus. Acta Crystallographica 8: 777-780. doi: 10.1107/S0365110X55002399 |
[4] | Franklin R, Holmes K (1958) Tobacco mosaic virus: application of the method of isomorphous replacement to the determination of the helical parameters and radial density distribution. Acta Crystallographica 11: 213-220. doi: 10.1107/S0365110X58000529 |
[5] | Crowther RA, Amos LA, Finch JT, et al. (1970) Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226: 421-425. doi: 10.1038/226421a0 |
[6] | Adrian M, Dubochet J, Lepault J, et al. (1984) Cryo-electron microscopy of viruses. Nature 308: 32-36. doi: 10.1038/308032a0 |
[7] | Henderson R, Baldwin JM, Ceska TA, et al. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213: 899-929. doi: 10.1016/S0022-2836(05)80271-2 |
[8] | Miyazawa A, Fujiyoshi Y, Unwin N. (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423: 949-955. doi: 10.1038/nature01748 |
[9] | Yonekura K, Maki-Yonekura S, Namba K (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643-650. doi: 10.1038/nature01830 |
[10] | van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6: 187-194. |
[11] | Penczek PA, Grassucci RA, Frank J (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53: 251-270. doi: 10.1016/0304-3991(94)90038-8 |
[12] | Lawson CL, Baker ML, Best C, et al. (2011) EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res 39: D456-64. |
[13] | Sachse C, Chen JZ, Coureux P-D, et al. (2007) High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J Mol Biol 371: 812-835. doi: 10.1016/j.jmb.2007.05.088 |
[14] | Yu X, Jin L, Zhou ZH (2008) 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453: 415-419. |
[15] | Zhang X, Settembre E, Xu C, et al. (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105: 1867-1872. doi: 10.1073/pnas.0711623105 |
[16] | Cong Y, Baker ML, Jakana J, et al. (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA 107: 4967-4972. |
[17] | Bai X-C, Fernandez IS, McMullan G, et al. (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2: e00461. |
[18] | Voorhees RM, Fernandez IS, Scheres SHW, et al. (2014) Structure of the Mammalian ribosome-sec61 complex to 3.4Å resolution. Cell 157: 1632-1643. |
[19] | Li X, Mooney P, Zheng S, et al. (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10: 584-590. doi: 10.1038/nmeth.2472 |
[20] | Lu P, Bai X-C, Ma D, et al. (2014) Three-dimensional structure of human γ-secretase. Nature 512: 166-170. doi: 10.1038/nature13567 |
[21] | Wu B, Peisley A, Tetrault D, et al. (2014) Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol Cell 55: 511-523. doi: 10.1016/j.molcel.2014.06.010 |
[22] | Bharat TAM, Murshudov GN, Sachse C, et al. (2015) Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles. Nature: 1-5. |
[23] | Ecken von der J, Müller M, Lehman W, et al. (2015) Structure of the F-actin-tropomyosin complex. Nature 519: 114-117. |
[24] | Fromm SA, Bharat TAM, Jakobi AJ, et al. (2015) Seeing tobacco mosaic virus through direct electron detectors. J Struct Biol 189: 87-97. doi: 10.1016/j.jsb.2014.12.002 |
[25] | Behrmann E, Tao G, Stokes DL, et al. (2012) Real-space processing of helical filaments in SPARX. J Struct Biol: 1-12. |
[26] | Egelman EH (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85: 225-234. doi: 10.1016/S0304-3991(00)00062-0 |
[27] | Desfosses A, Ciuffa R, Gutsche I, et al. (2014) SPRING—an image processing package for single-particle based helical reconstruction from electron cryomicrographs. J Struct Biol 185: 15-26. doi: 10.1016/j.jsb.2013.11.003 |
[28] | Rohou A, Grigorieff N (2014) Frealix: model-based refinement of helical filament structures from electron micrographs. J Struct Biol 186: 234-244. doi: 10.1016/j.jsb.2014.03.012 |
[29] | Sindelar CV, Downing KH (2007) The beginning of kinesin's force-generating cycle visualized at 9-A resolution. J Cell Biol 177: 377-385. doi: 10.1083/jcb.200612090 |
[30] | Klug A, Crick FHC, Wyckhoff HW (1958) Diffraction by Helical Structures. Acta Crystallographica 11: 199-213. doi: 10.1107/S0365110X58000517 |
[31] | Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27: 1-24. doi: 10.1101/SQB.1962.027.001.005 |
[32] | Moore PB, Huxley HE, DeRosier DJ (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50: 279-295. doi: 10.1016/0022-2836(70)90192-0 |
[33] | Mandelkow EM, Mandelkow E (1985) Unstained microtubules studied by cryo-electron microscopy. Substructure, supertwist and disassembly. J Mol Biol 181: 123-135. |
[34] | Finch JT (1964) Resolution of the substructure of tobacco mosaic virus in the electron microscope. J Mol Biol 8: 872-874. doi: 10.1016/S0022-2836(64)80168-6 |
[35] | Sachse C, Fändrich M, Grigorieff N (2008) Paired beta-sheet structure of an Abeta(1-40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci USA 105: 7462-7466. doi: 10.1073/pnas.0712290105 |
[36] | Carragher B, Bluemke DA, Gabriel B, et al. (1988) Structural analysis of polymers of sickle cell hemoglobin. I. Sickle hemoglobin fibers. J Mol Biol 199: 315-331. |
[37] | Xu C, Rice WJ, He W, et al. (2002) A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol 316: 201-211. doi: 10.1006/jmbi.2001.5330 |
[38] | Korkhov VM, Sachse C, Short JM, et al. (2010) Three-dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure 18: 677-687. doi: 10.1016/j.str.2010.03.001 |
[39] | Hou F, Sun L, Zheng H, et al. (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146: 448-461. doi: 10.1016/j.cell.2011.06.041 |
[40] | Alushin GM, Lander GC, Kellogg EH, et al. (2014) High-Resolution Microtubule Structures Reveal the Structural Transitionsin ab-Tubulin upon GTP Hydrolysis. Cell 157: 1117-1129. doi: 10.1016/j.cell.2014.03.053 |
[41] | Galkin VE, Orlova A, Vos MR, et al. (2015) Near-atomic resolution for one state of f-actin. Structure 23: 173-182. doi: 10.1016/j.str.2014.11.006 |
[42] | Stewart M (1988) Computer image processing of electron micrographs of biological structures with helical symmetry. J Electron Microsc Tech 9: 325-358. doi: 10.1002/jemt.1060090404 |
[43] | DeRosier DJ, Moore PB (1970) Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol 52: 355-369. doi: 10.1016/0022-2836(70)90036-7 |
[44] | Moody MF (1990) Biophysical electron microscopy: basic concepts and modern techniques—image analysis of electron micrographs. 517. |
[45] | Carragher B, Whittaker M, Milligan RA (1996) Helical processing using PHOELIX. J Struct Biol 116: 107-112. doi: 10.1006/jsbi.1996.0018 |
[46] | Owen CH, Morgan DG, DeRosier DJ (1996) Image analysis of helical objects: the Brandeis Helical Package. J Struct Biol 116: 167-175. doi: 10.1006/jsbi.1996.0027 |
[47] | Beroukhim R, Unwin N (1997) Distortion correction of tubular crystals: improvements in the acetylcholine receptor structure. Ultramicroscopy 70: 57-81. doi: 10.1016/S0304-3991(97)00070-3 |
[48] | Pomfret AJ, Rice WJ, Stokes DL (2007) Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases. J Struct Biol 157: 106-116. doi: 10.1016/j.jsb.2006.05.012 |
[49] | Ramey VH, Wang H-W, Nogales E (2009) Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries. J Struct Biol 167: 97-105. doi: 10.1016/j.jsb.2009.05.002 |
[50] | Diaz R, Rice WJ, Stokes DL. (2010) Fourier-Bessel reconstruction of helical assemblies. Meth Enzymol 482: 131-165. doi: 10.1016/S0076-6879(10)82005-1 |
[51] | Erickson HP, Klug A (1971) Measurement and Compensation of Defocusing and Aberrations by Fourier Processing of Electron Micrographs. Philos Trans R Soc Lond, B, Biol Sci 261: 105-118. doi: 10.1098/rstb.1971.0040 |
[52] | Henderson R (1992) Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice. Ultramicroscopy 46: 1-18. doi: 10.1016/0304-3991(92)90003-3 |
[53] | Glaeser RM (2007) Electron Crystallography of Helical Structures in Electron Crystallography of Biological Macromolecules. Oxford University Press, USA; 2007: 304-342. |
[54] | Egelman EH (2010) Reconstruction of helical filaments and tubes. Meth Enzymol 482: 167-183. doi: 10.1016/S0076-6879(10)82006-3 |
[55] | Heymann JB, Chagoyen M, Belnap DM (2005) Common conventions for interchange and archiving of three-dimensional electron microscopy information in structural biology. J Struct Biol 151:196-207. doi: 10.1016/j.jsb.2005.06.001 |
[56] | Egelman EH (2014) Ambiguities in helical reconstruction. eLife 3. |
[57] | Vonck J (2000) Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 85: 123-129. doi: 10.1016/S0304-3991(00)00052-8 |
[58] | Moody MF (2011) Structural Biology Using Electrons and X-Rays. Academic Press; 2011. |
[59] | Sachse C, Xu C, Wieligmann K, et al. (2006) Quaternary structure of a mature amyloid fibril from Alzheimer's Abeta(1-40) peptide. J Mol Biol 362: 347-354. doi: 10.1016/j.jmb.2006.07.011 |
[60] | Lučić V, Förster F, Baumeister W (2005) STRUCTURAL STUDIES BY ELECTRON TOMOGRAPHY: From Cells to Molecules. Annu Rev Biochem 74: 833-865. doi: 10.1146/annurev.biochem.73.011303.074112 |
[61] | Briggs JA (2013) Structural biology in situ—the potential of subtomogram averaging. Curr Opin Struct Biol 23: 261-267. doi: 10.1016/j.sbi.2013.02.003 |
[62] | Skruzny M, Desfosses A, Prinz S, et al. (2015) An Organized Co-assembly of Clathrin Adaptors Is Essential for Endocytosis. Dev Cell 33: 150-162. doi: 10.1016/j.devcel.2015.02.023 |
[63] | Bharat TAM, Davey NE, Ulbrich P, et al. (2012) Structure of the immature retroviral capsid at 8Å resolution by cryo-electron microscopy. Nature 487: 385-389. doi: 10.1038/nature11169 |
[64] | Wall JS, Hainfeld JF (1986) Mass mapping with the scanning transmission electron microscope. Annu Rev Biophys Biophys Chem 15: 355-376. doi: 10.1146/annurev.bb.15.060186.002035 |
[65] | Wall JS, Simon MN (2001) Scanning transmission electron microscopy of DNA-protein complexes. Methods Mol Biol 148: 589-601. |
[66] | Scheele RB, Borisy GG (1978) Electron microscopy of metal-shadowed and negatively stained microtubule protein. Structure of the 30 S oligomer. J Biol Chem 253: 2846-2851. |
[67] | Hoenger A, Doerhoefer M, Woehlke G, et al. (2000) Surface topography of microtubule walls decorated with monomeric and dimeric kinesin constructs. Biol Chem 381: 1001-1011. |
[68] | Schmitz S, Schaap IAT, Kleinjung J, et al. (2010) Malaria Parasite Actin Polymerization and Filament Structure. J Biol Chem 285: 36577-36585. doi: 10.1074/jbc.M110.142638 |
[69] | Finch JT (1972) The hand of the helix of tobacco virus. J Mol Biol 66: 291-294. doi: 10.1016/0022-2836(72)90480-9 |
[70] | Low HH, Sachse C, Amos LA, et al. (2009) Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139: 1342-1352. doi: 10.1016/j.cell.2009.11.003 |
[71] | Stewart A, Grigorieff N (2004) Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102: 67-84. doi: 10.1016/j.ultramic.2004.08.008 |
[72] | Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142: 334-347. doi: 10.1016/S1047-8477(03)00069-8 |
[73] | Grigorieff N (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol 277: 1033-1046. doi: 10.1006/jmbi.1998.1668 |
[74] | Fujii T, Iwane AH, Yanagida T, et al. (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467: 724-728. doi: 10.1038/nature09372 |
[75] | Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157: 117-125. doi: 10.1016/j.jsb.2006.05.004 |
[76] | Heymann JB, Belnap DM (2007) Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157: 3-18. doi: 10.1016/j.jsb.2006.06.006 |
[77] | Scheres SHW (2012) RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180: 519-530. doi: 10.1016/j.jsb.2012.09.006 |
[78] | Clemens DL, Ge P, Lee B-Y, et al. (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell 160: 940-951. doi: 10.1016/j.cell.2015.02.005 |
[79] | Gutsche I, Desfosses A, Effantin G, et al. (2015) Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 348: 704-707. |
[80] | Ciuffa R, Lamark T, Tarafder AK, et al. (2015) The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold. Cell Rep 11: 748-758. doi: 10.1016/j.celrep.2015.03.062 |
[81] | Kühlbrandt W (2014) The Resolution Revolution. Science 343: 1443-1444. doi: 10.1126/science.1251652 |
[82] | Faruqi AR, Henderson R (2007) Electronic detectors for electron microscopy. Curr Opin Struct Biol 17: 549-555. doi: 10.1016/j.sbi.2007.08.014 |
[83] | Wang Z, Hryc CF, Bammes B, et al. (2014) An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat Commun 5: 4808. doi: 10.1038/ncomms5808 |
[84] | Campbell MG, Cheng A, Brilot AF, et al. (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20: 1823-1828. doi: 10.1016/j.str.2012.08.026 |
[85] | Bartesaghi A, Matthies D, Banerjee S, et al. (2014) Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Proc Natl Acad Sci USA 111: 11709-11714. |
[86] | Allegretti M, Mills DJ, McMullan G, et al. (2014) Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3: e01963-e01963. |
[87] | Brilot AF, Chen JZ, Cheng A, et al. (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177: 630-637. doi: 10.1016/j.jsb.2012.02.003 |
[88] | Scheres SH (2014) Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3: e03665. |
[89] | Holmes K, Franklin R (1958) The radial density distribution in some strains of tobacco mosaic virus. Virology 6: 328-336. doi: 10.1016/0042-6822(58)90086-2 |
[90] | Cyrklaff M, Kühlbrandt W (1994) High-resolution electron microscopy of biological specimens in cubic ice. Ultramicroscopy 55: 141-153. doi: 10.1016/0304-3991(94)90165-1 |
[91] | Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6Å reconstruction of rotavirus VP6. eLife 4. |
[92] | Bartesaghi A, Merk A, Banerjee S, et al. (2015) Electron microscopy. 2.2Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348: 1147-1151. |
[93] | McMullan G, Faruqi AR, Henderson R, et al. (2009) Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109: 1144-1147. doi: 10.1016/j.ultramic.2009.05.005 |