Citation: Nily Dan. Lipid-Nucleic Acid Supramolecular Complexes: Lipoplex Structure and the Kinetics of Formation[J]. AIMS Biophysics, 2015, 2(2): 163-183. doi: 10.3934/biophy.2015.2.163
[1] |
Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science (New York, NY) 175: 949-955. doi: 10.1126/science.175.4025.949
![]() |
[2] | Forsythe JA, Jiang BH, Iyer NV, et al. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604-4613. |
[3] |
Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129-138. doi: 10.1038/nrd2742
![]() |
[4] |
Caplen NJ, Alton E, Middleton PG, et al. (1995) Liposome-mediated CFTR gene-transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1: 39-46. doi: 10.1038/nm0195-39
![]() |
[5] | Fujiwara T, Grimm EA, Mukhopadhyay T, et al. (1994) Induction of chemosensitivity in human lung cancer cells in-vivo by adenovirus-mediated transfer of the wild type P53 gene. Cancer Res 54: 2287-2291. |
[6] |
Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Delivery Rev 54: 715-758. doi: 10.1016/S0169-409X(02)00046-7
![]() |
[7] |
Abou-El-Enein M, Bauer G, Reinke P, et al. (2014) A roadmap toward clinical translation of genetically-modified stem cells for treatment of HIV. Trends Mol Med 20: 632-642. doi: 10.1016/j.molmed.2014.08.004
![]() |
[8] |
Carnio S, Novello S, Bironzo P, et al. (2014) Moving from histological subtyping to molecular characterization: new treatment opportunities in advanced non-small-cell lung cancer. Expert Review Anticancer Therapy 14: 1495-1513. doi: 10.1586/14737140.2014.949245
![]() |
[9] |
Pensado A, Seijo B, Sanchez A (2014) Current strategies for DNA therapy based on lipid nanocarriers. Expert Opinion Drug Delivery 11: 1721-1731. doi: 10.1517/17425247.2014.935337
![]() |
[10] |
Qasim W, Thrasher AJ (2014) Progress and prospects for engineered T cell therapies. Brit J Haematol 166: 818-829. doi: 10.1111/bjh.12981
![]() |
[11] |
Sahay G, Querbes W, Alabi C, et al. (2013) Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 31: 653-U119. doi: 10.1038/nbt.2614
![]() |
[12] |
Schroeder A, Levins CG, Cortez C, et al. (2010) Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 267: 9-21. doi: 10.1111/j.1365-2796.2009.02189.x
![]() |
[13] |
Xue W, Dahlman JE, Tammela T, et al. (2014) Small RNA combination therapy for lung cancer. P Natl Acad Sci U S A 111: E3553-E3561. doi: 10.1073/pnas.1412686111
![]() |
[14] |
Dahlman JE, Barnes C, Khan OF, et al. (2014) In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol 9: 648-655. doi: 10.1038/nnano.2014.84
![]() |
[15] | Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy- an overview. J Clinical Diagnostic Res JCDR 9: GE01-06. |
[16] |
Yang J, Liu H, Zhang X (2014) Design, preparation and application of nucleic acid delivery carriers. Biotechnology Advances 32: 804-817. doi: 10.1016/j.biotechadv.2013.11.004
![]() |
[17] |
Choi YS, Lee MY, David AE, et al. (2014) Nanoparticles for gene delivery: therapeutic and toxic effects. Molecular Cellular Toxicology 10: 1-8. doi: 10.1007/s13273-014-0001-3
![]() |
[18] |
Dan N, Danino D (2014) Structure and kinetics of lipid-nucleic acid complexes. Adv Colloid Interface 205: 230-239. doi: 10.1016/j.cis.2014.01.013
![]() |
[19] |
Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7: 31-34. doi: 10.1038/sj.gt.3301110
![]() |
[20] |
Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109: 259-302. doi: 10.1021/cr800409e
![]() |
[21] | Schaffer DV, Fidelman NA, Dan N, et al. (2000) Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng 67: 598-606. |
[22] |
Radler JO, Koltover I, Salditt T, et al. (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275: 810-814. doi: 10.1126/science.275.5301.810
![]() |
[23] | Koltover I, Salditt T, Radler JO, et al. (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281: 78-81. |
[24] |
Simberg D, Danino D, Talmon Y, et al. (2001) Phase behavior, DNA ordering, and size instability of cationic lipoplexes—Relevance to optimal transfection activity. J Biol Chem 276: 47453-47459. doi: 10.1074/jbc.M105588200
![]() |
[25] |
Evans HM, Ahmad A, Ewert K, et al. (2003) Structural polymorphism of DNA-dendrimer complexes. Phys Rev Lett 91: 075501. doi: 10.1103/PhysRevLett.91.075501
![]() |
[26] |
Merkel OM, Mintzer MA, Sitterberg J, et al. (2009) Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug Chem 20: 1799-1806. doi: 10.1021/bc900243r
![]() |
[27] |
Juliano R, Alam MR, Dixit V, et al. (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36: 4158-4171. doi: 10.1093/nar/gkn342
![]() |
[28] |
de Fougerolles A, Vornlocher HP, Maraganore J, et al. (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6: 443-453. doi: 10.1038/nrd2310
![]() |
[29] |
Akinc A, Goldberg M, Qin J, et al. (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17: 872-879. doi: 10.1038/mt.2009.36
![]() |
[30] |
Desigaux L, Sainlos M, Lambert O, et al. (2007) Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference. Proc Natl Acad Sci U S A 104: 16534-16539. doi: 10.1073/pnas.0707431104
![]() |
[31] |
Tros de Ilarduya C, Sun Y, Duzgunes N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40: 159-170. doi: 10.1016/j.ejps.2010.03.019
![]() |
[32] |
Ma BC, Zhang SB, Jiang HM, et al. (2007) Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Controlled Release 123: 184-194. doi: 10.1016/j.jconrel.2007.08.022
![]() |
[33] |
Kapoor M, Burgess DJ, Patil SD (2012) Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 427: 35-57. doi: 10.1016/j.ijpharm.2011.09.032
![]() |
[34] |
Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116: 255-264. doi: 10.1016/j.jconrel.2006.06.024
![]() |
[35] |
Safinya CR, Ewert KK, Leal C (2011) Cationic liposome-nucleic acid complexes: liquid crystal phases with applications in gene therapy. Liq Cryst 38: 1715-1723. doi: 10.1080/02678292.2011.624364
![]() |
[36] |
May S, Ben-Shaul A (1997) DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures. Biophys J 73: 2427-2440. doi: 10.1016/S0006-3495(97)78271-7
![]() |
[37] |
Harries D, May S, Gelbart WM, et al. (1998) Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys J 75: 159-173. doi: 10.1016/S0006-3495(98)77503-4
![]() |
[38] | Bruinsma R (1998) Electrostatics of DNA cationic lipid complexes: isoelectric instability. Eur Phys J B 4: 75-88. |
[39] |
Dan N (1996) Formation of ordered domains in membrane-bound DNA. Biophys J 71: 1267-1272. doi: 10.1016/S0006-3495(96)79326-8
![]() |
[40] |
Dan NL (1997) Multilamellar structures of DNA complexes with cationic liposomes. Biophys J 73: 1842-1846. doi: 10.1016/S0006-3495(97)78214-6
![]() |
[41] |
Dan N (1998) The structure of DNA complexes with cationic liposomes—cylindrical or flat bilayers? BBA-Biomembranes 1369: 34-38. doi: 10.1016/S0005-2736(97)00171-5
![]() |
[42] |
Simberg D, Danino D, Talmon Y, et al. (2001) Phase behavior, DNA ordering, and size instability of cationic lipoplexes—Relevance to optimal transfection activity. J Biol Chem 276: 47453-47459. doi: 10.1074/jbc.M105588200
![]() |
[43] | Simberg D, Danino D, Talmon Y, et al. (2003) Phase behavior, DNA ordering and size instability of cationic lipoplexes: Relevance to optimal transfection activity. J Liposome Res 13: 86-87. |
[44] |
Kastner E, Kaur R, Lowry D, et al. (2014) High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int J Pharm 477: 361-368. doi: 10.1016/j.ijpharm.2014.10.030
![]() |
[45] |
Balbino TA, Azzoni AR, de la Torre LG (2013) Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloid Surface B 111: 203-210. doi: 10.1016/j.colsurfb.2013.04.003
![]() |
[46] |
Chen D, Love KT, Chen Y, et al. (2012) Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation. J Am Chem Soc 134: 6948-6951. doi: 10.1021/ja301621z
![]() |
[47] |
Kennedy MT, Pozharski EV, Rakhmanova VA, et al. (2000) Factors governing the assembly of cationic phospholipid-DNA complexes. Biophys J 78: 1620-1633. doi: 10.1016/S0006-3495(00)76714-2
![]() |
[48] |
Pozharski EV, MacDonald RC (2007) Single lipoplex study of cationic lipoid-DNA, self-assembled complexes. Mol Pharm 4: 962-974. doi: 10.1021/mp700080m
![]() |
[49] |
Barreleiro PCA, Lindman B (2003) The kinetics of DNA-cationic vesicle complex formation. JPhys Chem B 107: 6208-6213. doi: 10.1021/jp0277107
![]() |
[50] |
Junquera E, Aicart E (2014) Cationic Lipids as Transfecting Agents of DNA in Gene Therapy. Current Topics Medicinal Chem 14: 649-663. doi: 10.2174/1568026614666140118203128
![]() |
[51] |
Ma B, Zhang S, Jiang H, et al. (2007) Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 123: 184-194. doi: 10.1016/j.jconrel.2007.08.022
![]() |
[52] | Xiong F, Mi Z, Gu N (2011) Cationic liposomes as gene delivery system: transfection efficiency and new application. Pharmazie 66: 158-164. |
[53] |
Zhdanov RI, Podobed OV, Vlassov VV (2002) Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy. Bioelectrochemistry 58: 53-64. doi: 10.1016/S1567-5394(02)00132-9
![]() |
[54] |
Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399-420. doi: 10.1016/0304-4157(79)90012-1
![]() |
[55] |
Epand RM (1998) Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta 1376: 353-368. doi: 10.1016/S0304-4157(98)00015-X
![]() |
[56] |
Seddon JM (1990) STRUCTURE OF THE INVERTED HEXAGONAL (HII) PHASE, AND NON-LAMELLAR PHASE-TRANSITIONS OF LIPIDS. Biochim Biophys Acta 1031: 1-69. doi: 10.1016/0304-4157(90)90002-T
![]() |
[57] |
Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380: 1-95. doi: 10.1016/S0370-1573(03)00118-2
![]() |
[58] | Nelson P (2013) Biological Physics: Freeman. |
[59] |
Gregory J, Barany S (2011) Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface 169: 1-12. doi: 10.1016/j.cis.2011.06.004
![]() |
[60] | G. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, et al. (1993) Polymers at Interfaces Springer;. |
[61] |
Sukhishvili SA, Granick S (1998) Polyelectrolyte adsorption onto an initially-bare solid surface of opposite electrical charge. J Chem Phys 109: 6861-6868. doi: 10.1063/1.477253
![]() |
[62] |
Pozharski E, MacDonald RC (2002) Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry. Biophys J 83: 556-565. doi: 10.1016/S0006-3495(02)75191-6
![]() |
[63] |
Pozharski E, MacDonald RC (2003) Lipoplex thermodynamics: Determination of DNA-cationic lipoid interaction energies. Biophys J 85: 3969-3978. doi: 10.1016/S0006-3495(03)74811-5
![]() |
[64] |
Koltover I, Salditt T, Safinya CR (1999) Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys J 77: 915-924. doi: 10.1016/S0006-3495(99)76942-0
![]() |
[65] |
Ahsan A, Rudnick J, Bruinsma R (1998) Elasticity theory of the B-DNA to S-DNA transition. Biophys J 74: 132-137. doi: 10.1016/S0006-3495(98)77774-4
![]() |
[66] |
Hirsch-Lerner D, Barenholz Y (1999) Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochimica Et Biophysica Acta-Biomembranes 1461: 47-57. doi: 10.1016/S0005-2736(99)00145-5
![]() |
[67] |
Tilcock CP, Bally MB, Farren SB, et al. (1982) Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine-dioleoylphosphatidylcholine systems: a phosphorus-31 and deuterium nuclear magnetic resonance study. Biochemistry 21: 4596-4601. doi: 10.1021/bi00262a013
![]() |
[68] |
Danino D, Kesselman E, Saper G, et al. (2009) Osmotically induced reversible transitions in lipid-DNA mesophases. Biophys J 96: L43-45. doi: 10.1016/j.bpj.2008.12.3887
![]() |
[69] |
Scarzello M, Chupin V, Wagenaar A, et al. (2005) Polymorphism of pyridinium amphiphiles for gene delivery: influence of ionic strength, helper lipid content, and plasmid DNA complexation. Biophys J 88: 2104-2113. doi: 10.1529/biophysj.104.053983
![]() |
[70] |
Ewert KK, Evans HM, Zidovska A, et al. (2006) A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice. J Am Chem Soc 128: 3998-4006. doi: 10.1021/ja055907h
![]() |
[71] |
Zidovska A, Evans HM, Ewert KK, et al. (2009) Liquid crystalline phases of dendritic lipid-DNA self-assemblies: lamellar, hexagonal, and DNA bundles. J Phys Chem B 113: 3694-3703. doi: 10.1021/jp806863z
![]() |
[72] | Wasungu L, Stuart MC, Scarzello M, et al. (2006) Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes. Biochim Biophys Acta 1758: 1677-1684. |
[73] |
Bilalov A, Olsson U, Lindman B (2009) A cubic DNA-lipid complex. Soft Matter 5: 3827-3830. doi: 10.1039/b908939j
![]() |
[74] | Larsson K (1983) Two cubic phases in monoolein-water system. Nature. |
[75] |
Leal C, Ewert KK, Bouxsein NF, et al. (2013) Stacking of Short DNA Induces the Gyroid Cubic-to-Inverted Hexagonal Phase Transition in Lipid-DNA Complexes. Soft Matter 9: 795-804. doi: 10.1039/C2SM27018H
![]() |
[76] |
Farago O, Ewert K, Ahmad A, et al. (2008) Transitions between distinct compaction regimes in complexes of multivalent cationic lipids and DNA. Biophys J 95: 836-846. doi: 10.1529/biophysj.107.124669
![]() |
[77] |
Fire A, Xu S, Montgomery MK, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. doi: 10.1038/35888
![]() |
[78] |
Davidson BL, Paulson HL (2004) Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 3: 145-149. doi: 10.1016/S1474-4422(04)00678-7
![]() |
[79] | Ponnappa BC (2009) siRNA for inflammatory diseases. Curr Opin Investig Drugs 10: 418-424. |
[80] |
Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129-138. doi: 10.1038/nrd2742
![]() |
[81] |
Takeshita F, Ochiya T (2006) Therapeutic potential of RNA interference against cancer. Cancer Sci 97: 689-696. doi: 10.1111/j.1349-7006.2006.00234.x
![]() |
[82] |
Leal C, Bouxsein NF, Ewert KK, et al. (2010) Highly efficient gene silencing activity of siRNA embedded in a nanostructured gyroid cubic lipid matrix. J Am Chem Soc 132: 16841-16847. doi: 10.1021/ja1059763
![]() |
[83] |
Leal C, Ewert KK, Shirazi RS, et al. (2011) Nanogyroids incorporating multivalent lipids: enhanced membrane charge density and pore forming ability for gene silencing. Langmuir 27: 7691-7697. doi: 10.1021/la200679x
![]() |
[84] |
Aytar BS, Muller JP, Kondo Y, et al. (2013) Redox-based control of the transformation and activation of siRNA complexes in extracellular environments using ferrocenyl lipids. J Am Chem Soc 135: 9111-9120. doi: 10.1021/ja403546b
![]() |
[85] |
Schroeder A, Levins CG, Cortez C, et al. (2010) Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 267: 9-21. doi: 10.1111/j.1365-2796.2009.02189.x
![]() |
[86] |
Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Revs Genet 8: 173-184. doi: 10.1038/nrg2006
![]() |
[87] |
De Paula D, Bentley MV, Mahato RI (2007) Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA 13: 431-456. doi: 10.1261/rna.459807
![]() |
[88] | A.S. Edelstein, Cammarata RC (1996) Nanomaterials: Synthesis, Properties and Applications: Inst. of Physics Publishing. |
[89] |
Filippova NL (1998) Adsorption and desorption kinetics of polyelectrolytes on planar surfaces. Langmuir 14: 1162-1176. doi: 10.1021/la970544n
![]() |
[90] |
Iruthayaraj J, Poptoshev E, Vareikis AV, et al. (2005) Adsorption of low charge density polyelectrolyte containing poly(ethylene oxide) side chains on silica: Effects of ionic strength and pH. Macromolecules 38: 6152-6160. doi: 10.1021/ma050851x
![]() |
[91] |
Sedeva IG, Fornasiero D, Ralston J, et al. (2009) The Influence of Surface Hydrophobicity on Polyacrylamide Adsorption. Langmuir 25: 4514-4521. doi: 10.1021/la803838k
![]() |
[92] |
McFarlane A, Yeap KY, Bremmell K, et al. (2008) The influence of flocculant adsorption kinetics on the dewaterability of kaolinite and smectite clay mineral dispersions. Colloid Surface A 317: 39-48. doi: 10.1016/j.colsurfa.2007.09.045
![]() |
[93] |
Enarsson L-E, Wagberg L (2008) Adsorption kinetics of cationic polyelectrolytes studied with stagnation point adsorption reflectometry and quartz crystal microgravimetry. Langmuir 24: 7329-7337. doi: 10.1021/la800198e
![]() |
[94] |
van Heiningen JA, Hill RJ (2011) Polymer adsorption onto a micro-sphere from optical tweezers electrophoresis. Lab Chip 11: 152-162. doi: 10.1039/C005217P
![]() |
[95] |
Dickinson E, Eriksson L (1991) Particle flocculation by adsorbing polymers. Adv Colloid Interfac 34: 1-29. doi: 10.1016/0001-8686(91)80045-L
![]() |
[96] |
Barany S, Szepesszentgyorgyi A (2004) Flocculation of cellular suspensions by polyelectrolytes. Adv Colloid Interfac 111: 117-129. doi: 10.1016/j.cis.2004.07.003
![]() |
[97] |
Popa I, Gillies G, Papastavrou G, et al. (2009) Attractive Electrostatic Forces between Identical Colloidal Particles Induced by Adsorbed Polyelectrolytes. J Phys Chem B 113: 8458-8461. doi: 10.1021/jp904041k
![]() |
[98] |
Popa I, Gillies G, Papastavrou G, et al. (2010) Attractive and Repulsive Electrostatic Forces between Positively Charged Latex Particles in the Presence of Anionic Linear Polyelectrolytes. J Phys Chem B 114: 3170-3177. doi: 10.1021/jp911482a
![]() |
[99] |
Lin MY, Lindsay HM, Weitz DA, et al. (1989) Universality in colloid aggregation. Nature 339: 360-362. doi: 10.1038/339360a0
![]() |
[100] | S. Edelstein, Cammarata RC (1996) Nanomaterials: Synthesis, Properties and Applications: Inst. of Physics Publishing, London, UK. |
[101] |
Lai E, van Zanten JH (2002) Real time monitoring of lipoplex molar mass, size and density. J Control Release 82: 149-158. doi: 10.1016/S0168-3659(02)00104-9
![]() |
[102] |
Lai E, van Zanten JH (2001) Monitoring DNA/poly-L-lysine polyplex formation with time-resolved multiangle laser light scattering. Biophys J 80: 864-873. doi: 10.1016/S0006-3495(01)76065-1
![]() |
[103] |
Gershon H, Ghirlando R, Guttman SB, et al. (1993) Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry 32: 7143-7151. doi: 10.1021/bi00079a011
![]() |
[104] |
Zhang Y, Garzon-Rodriguez W, Manning MC, et al. (2003) The use of fluorescence resonance energy transfer to monitor dynamic changes of lipid-DNA interactions during lipoplex formation. Biochim Biophys Acta 1614: 182-192. doi: 10.1016/S0005-2736(03)00177-9
![]() |
[105] |
Braun CS, Fisher MT, Tomalia DA, et al. (2005) A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes. Biophys J 88: 4146-4158. doi: 10.1529/biophysj.104.055202
![]() |
[106] |
Barreleiro PC, May RP, Lindman B (2003) Mechanism of formation of DNA-cationic vesicle complexes. Faraday Discuss 122: 191-201; discussion 269-182. doi: 10.1039/b200796g
![]() |
[107] |
Leal C, Sandstrom D, Nevsten P, et al. (2008) Local and translational dynamics in DNA-lipid assemblies monitored by solid-state and diffusion NMR. BBA-Biomembranes 1778: 214-228. doi: 10.1016/j.bbamem.2007.09.035
![]() |
[108] |
Zuidam NJ, Barenholz Y (1997) Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin. Biochim Biophys Acta 1329: 211-222. doi: 10.1016/S0005-2736(97)00110-7
![]() |
[109] |
Zuidam NJ, Barenholz Y (1998) Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta 1368: 115-128. doi: 10.1016/S0005-2736(97)00187-9
![]() |
[110] |
Szilagyi I, Trefalt G, Tiraferri A, et al. (2014) Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10: 2479-2502. doi: 10.1039/c3sm52132j
![]() |
[111] |
Maier B, Radler JO (1999) Conformation and self-diffusion of single DNA molecules confined to two dimensions. Phys Rev Lett 82: 1911-1914. doi: 10.1103/PhysRevLett.82.1911
![]() |
[112] |
Epand RF, Sarig H, Ohana D, et al. (2011) Physical properties affecting cochleate formation and morphology using antimicrobial oligo-acyl-lysyl peptide mimetics and mixtures mimicking the composition of bacterial membranes in the absence of divalent cations. J Phys Chem B 115: 2287-2293. doi: 10.1021/jp111242q
![]() |
[113] |
Epand RF, Mor A, Epand RM (2011) Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell Mol Life Sci 68: 2177-2188. doi: 10.1007/s00018-011-0711-9
![]() |
[114] |
Sarig H, Ohana D, Epand RF, et al. (2011) Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance. FASEB J 25: 3336-3343. doi: 10.1096/fj.11-183764
![]() |
[115] |
Chen DL, Love KT, Chen Y, et al. (2012) Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation. J Am Chem Soc 134: 6948-6951. doi: 10.1021/ja301621z
![]() |
[116] |
Leung AKK, Hafez IM, Baoukina S, et al. (2012) Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core (vol 116, pg 18440, 2012). J Phys Chem C 116: 22104-22104. doi: 10.1021/jp3088786
![]() |