[1]
|
Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymerases. Annu Rev Biochem 63: 777–822. doi: 10.1146/annurev.bi.63.070194.004021
|
[2]
|
Joyce CM, Benkovic SJ (2004) DNA polymerase fidelity: kinetics, structure, and checkpoints. Biochemistry 43: 14317–14324. doi: 10.1021/bi048422z
|
[3]
|
Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5: 507–516. doi: 10.1038/nmeth.1208
|
[4]
|
Santoso Y, Joyce CM, Potapova O, et al. (2010) Conformational transitions in DNA polymerase I revealed by single-molecule FRET. P Natl Acad Sci USA 107: 715–720. doi: 10.1073/pnas.0910909107
|
[5]
|
Hohlbein J, Aigrain L, Craggs TD, et al. (2013) Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nat commun 4: 2131.
|
[6]
|
Lamichhane R, Berezhna SY, Gill JP, et al. (2013) Dynamics of site switching in DNA polymerase. J Am Chem Soc 135: 4735–4742. doi: 10.1021/ja311641b
|
[7]
|
Berezhna SY, Gill JP, Lamichhane R, et al. (2012) Single-molecule Forster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I. J Am Chem Soc 134: 11261–11268. doi: 10.1021/ja3038273
|
[8]
|
Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J biol chem 274: 17395–17398. doi: 10.1074/jbc.274.25.17395
|
[9]
|
Wu EY, Beese LS (2011) The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an "ajar" intermediate conformation in the nucleotide selection mechanism. J biol chem 286: 19758–19767. doi: 10.1074/jbc.M110.191130
|
[10]
|
Beese LS, Derbyshire V, Steitz TA (1993) Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260: 352–355. doi: 10.1126/science.8469987
|
[11]
|
Beese LS, Steitz TA (1991) Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10: 25–33.
|
[12]
|
Derbyshire V, Pinsonneault JK, Joyce CM (1995) Structure-function analysis of 3'-5' exonuclease of DNA polymerases. Method Enzymol 262: 363–385. doi: 10.1016/0076-6879(95)62030-3
|
[13]
|
Aliotta JM, Pelletier JJ, Ware JL, et al. (1996) Thermostable Bst DNA polymerase I lacks a 3'-5' proofreading exonuclease activity. Genet Anal 12: 185–195. doi: 10.1016/S1050-3862(96)80005-2
|
[14]
|
Rastgoo N, Sadeghizadeh M, Bambaei B, et al. (2009) Restoring 3'-5' exonuclease activity of thermophilic Geobacillus DNA polymerase I using site-directed mutagenesis in active site. J Biotechnol 144: 245–252. doi: 10.1016/j.jbiotec.2009.09.006
|
[15]
|
Kiefer JR, Mao C, Hansen CJ, et al. (1997) Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure 5: 95–108.
|
[16]
|
Wang CX, Zakharova E, Li J, et al. (2004) Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity. Biochemistry 43: 3853–3861. doi: 10.1021/bi0302292
|
[17]
|
Kirmizialtin S, Nguyen V, Johnson KA, et al. (2012) How conformational dynamics of DNA polymerase select correct substrates: experiments and simulations. Structure 20: 618–627. doi: 10.1016/j.str.2012.02.018
|
[18]
|
Johnson KA (2010) The kinetic and chemical mechanism of high-fidelity DNA polymerases. BBA- Proteins Proteom 1804: 1041–1048. doi: 10.1016/j.bbapap.2010.01.006
|
[19]
|
Datta K, Johnson NP, LiCata VJ, et al. (2009) Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases. J Biol Chem 284: 17180–17193. doi: 10.1074/jbc.M109.007641
|
[20]
|
Tsai YC, Johnson KA (2006) A new paradigm for DNA polymerase specificity. Biochemistry 45: 9675–9687. doi: 10.1021/bi060993z
|
[21]
|
Previte MJ, Zhou C, Kellinger M, et al. (2015) DNA sequencing using polymerase substrate-binding kinetics. Nat Commun 6: 5936. doi: 10.1038/ncomms6936
|
[22]
|
Walsh MT, Roller EE, Ko KS, et al. (2015) Measurement of DNA polymerase incorporation kinetics of dye-labeled nucleotides using total internal reflection fluorescence microscopy. Biochemistry 54: 4019–4021. doi: 10.1021/acs.biochem.5b00269
|
[23]
|
Capson TL, Peliska JA, Kaboord BF, et al. (1992) Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Biochemistry 31: 10984–10994. doi: 10.1021/bi00160a007
|
[24]
|
Joyce CM, Potapova O, Delucia AM, et al. (2008) Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity. Biochemistry 47: 6103–6116. doi: 10.1021/bi7021848
|
[25]
|
Christian TD, Romano LJ, Rueda D (2009) Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution. P Natl Acad Sci USA 106: 21109–21114. doi: 10.1073/pnas.0908640106
|