Citation: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi. In-situ AC electroosmotic and thermal perturbation effects for wide range of ionic strength[J]. AIMS Biophysics, 2017, 4(3): 451-464. doi: 10.3934/biophy.2017.3.451
| [1] | Kaajakari V (2009) Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems, Las Vegas, NV: Small Gear Publishing. |
| [2] |
Vafaie RH, Ghavifekr HB, Lintel HV, et al. (2016) Bi‐directional AC electrothermal micropump for on‐chip biological applications. Electrophoresis 37: 719–726. doi: 10.1002/elps.201500404
|
| [3] | Poorreza A, Vafaie RH, Mehdipoor M, et al. (2013) A microseparator based-on 4-phase travelling wave dielectrophoresis for Lab-on-a-chip applications. Indian J Pure Appl Phys 51: 506–515. |
| [4] |
Vafaie RH, Mehdipoor M, Pourmand A, et al. (2013) An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining. Biotechnol Bioprocess Eng 18: 594–605. doi: 10.1007/s12257-012-0431-5
|
| [5] | Nguyen NT, Wu Z (2004) Micromixers-a review. J Micromech Microeng 15: R1. |
| [6] |
He B, Burke BJ, Zhang X, et al. (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal Chem 73: 1942–1947. doi: 10.1021/ac000850x
|
| [7] |
Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulationsand optical study. Anal Chem 74: 4279–4286. doi: 10.1021/ac025642e
|
| [8] |
Ryu KS, Shaikh K, Goluch E, et al. (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4: 608–613. doi: 10.1039/b403305a
|
| [9] |
Yang Z, Matsumoto S, Goto H, et al. (2001) Ultrasonic micromixer for microfluidic systems. Sensor Actuat A Phys 93: 266–272. doi: 10.1016/S0924-4247(01)00654-9
|
| [10] | Français O, Jullien MC, Rousseau L, et al. (2007) An active chaotic micromixer integrating thermal actuation associating PDMS and silicon microtechnology. Arxiv preprint arXiv: 0711.3290. |
| [11] | Morgan H, Green NG (2003) AC electrokinetics: Colloids and nanoparticles, Baldock, Hertfordshire: Research Study Press LTD. |
| [12] |
Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76: 3208–3213. doi: 10.1021/ac035451r
|
| [13] |
Fu LM, Yang RJ, Lin CH, et al. (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26: 1814–1824. doi: 10.1002/elps.200410222
|
| [14] |
Meisel I, Ehrhard P (2006) Electrically-excited (electroosmotic) flows in microchannels for mixing applications. Eur J Mech B-Fluid 25: 491–504. doi: 10.1016/j.euromechflu.2005.12.002
|
| [15] |
Chen CK, Cho CC (2008) Electrokinetically driven flow mixing utilizing chaotic electric fields. Microfluid Nanofluid 5: 785–793. doi: 10.1007/s10404-008-0286-4
|
| [16] |
Yang CK, Chang JS, Chao SD, et al. (2007) Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect. Appl Phys Lett 91: 113904. doi: 10.1063/1.2784941
|
| [17] |
Sigurdson M, Wang D, Meinhart CD (2005) Electrothermal stirring for heterogeneous immunoassays. Lab Chip 5: 1366–1373. doi: 10.1039/b508224b
|
| [18] |
Huang KR, Chang JS, Chao SD, et al. (2008) Simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. J Appl Phys 104: 064702. doi: 10.1063/1.2981195
|
| [19] |
Ramos A, Morgan H, Green NG, et al. (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31: 2338. doi: 10.1088/0022-3727/31/18/021
|
| [20] |
Zhu J, Xuan X (2009) Dielectrophoretic focusing of particles in a microchannel constriction using DC‐biased AC flectric fields. Electrophoresis 30: 2668–2675. doi: 10.1002/elps.200900017
|
| [21] |
Williams SJ, Green NG (2015) Electrothermal pumping with interdigitated electrodes and resistive heaters. Electrophoresis 36: 1681–1689. doi: 10.1002/elps.201500112
|
| [22] |
Vafaie RH, Ghavifekr HB (2017) Configurable ACET micro-manipulator for high conductive mediums by using a novel electrode engineering. Microsys Technol 23: 1393–1403. doi: 10.1007/s00542-015-2806-y
|
| [23] |
Chang CC, Yang RJ (2004) Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. J Micromech Microeng 14: 550. doi: 10.1088/0960-1317/14/4/016
|
| [24] | Probstein RF (2005) Physicochemical hydrodynamics: an introduction, John Wiley & Sons. |
| [25] | Landau LD, Bell JS, Kearsley MJ, et al. (2013) Electrodynamics of continuous media, Elsevier. |
| [26] | Lide DR (2004) CRC handbook of chemistry and physics, CRC press. |
| [27] |
Yuan Q, Yang K, Wu J (2014) Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluid Nanofluid 16: 167–178. doi: 10.1007/s10404-013-1231-8
|
| [28] |
Chen JK, Yang RJ (2007) Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 28: 975–983. doi: 10.1002/elps.200600470
|
| [29] | Taguchi G, Chowdhury S, Wu Y (2005) Taguchi's quality engineering handbook, Wiley. |
| [30] |
Huang SH, Hsueh HJ, Hung KY (2010) Configurable AC electroosmotic generated in-plane microvortices and pumping flow in microchannels. Microfluid Nanofluid 8: 187–195. doi: 10.1007/s10404-009-0453-2
|
| [31] |
Jorcin JB, Orazem ME, Pébère N, et al. (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51: 1473–1479. doi: 10.1016/j.electacta.2005.02.128
|
| [32] |
Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18: 1883–1892. doi: 10.1021/la015646z
|