Citation: Ulrich Lüttge. Physics and the molecular revolution in plant biology: union needed for managing the future[J]. AIMS Biophysics, 2016, 3(4): 501-521. doi: 10.3934/biophy.2016.4.501
[1] | Abbaspour N, Kaiser B, Tyerman S (2013) Chloride transport and compartmentation within main and lateral roots of two grapevine rootstocks differing in salt tolerance. Trees 27: 1317–1325. doi: 10.1007/s00468-013-0880-2 |
[2] | Aloni R, Langhans M, Aloni E, et al. (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220: 177–182. doi: 10.1007/s00425-004-1381-8 |
[3] | Barthlott W, Neinhuis C (1997) Purity of the sacred lotus for escape from contamination in biological surfaces. Planta 202: 1–8. |
[4] | Barthlott W, Mail M, Neinhuis C (2016) Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Philos T Roy Soc A. DOI: 10.1098/rsta.2016.0191. |
[5] | Barthlott W, Schimmel T, Wiersch S, et al. (2010) The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air-retention under water. Adv Eng Mater 22: 1–4. doi: 10.1002/adma.201090021 |
[6] | Behrens HM, Gradmann D, Sievers A (1985) Membrane potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163: 463–472. doi: 10.1007/BF00392703 |
[7] | Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and the non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102: 425–432. |
[8] | Blüchel KG, Malik F (2006) Faszination Bionik: Die Intelligenz der Schöpfung. Mcb Verlag, St. Gallen |
[9] | Böhm J, Scherzer S, Krol E, et al. (2016) The Venus flytrap Dionea muscipula counts prey-induced action potentials to induce sodium uptake. Curr Biol 26: 286–295. |
[10] | Borland AM, Hartwell J, Jenkins GI, et al. (1999) Metabolite control overrides circadian regulation in phosphoenolpyruvate carboxylase kinase and CO2 fixation in Crassulacean acid metabolism. Plant Physiol 121: 889–896. doi: 10.1104/pp.121.3.889 |
[11] | Boyden ES, Zhang F, Bamberg E, et al. (2005) Millisecond-timescale, genetically targeted optical control of neuronal activity. Nat Neurosci 8: 1263–1268. |
[12] | Brauner L, Bünning E (1930) Geoelektrischer Effekt und Elektrotropismus. Berichte der Deutschen Botanischen Gesellschaft 48: 470–476. |
[13] | Brickwede F, Erb R, Lefèvre J, et al. (2007) Bionik und Nachhaltigkeit-Lernen von der Natur. Erich Schmidt Verlag, Eds., Berlin. |
[14] | Britto DT, Ruth TJ, Lapis S, et al. (2004) Cellular and whole-plant chloride dynamics in barley: insights into chloride-nitrogen interactions and salinity responses. Planta 218: 615–622. |
[15] | Bucci SJ, Scholz FG, Goldstein G, et al. (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26: 1633–1645. doi: 10.1046/j.0140-7791.2003.01082.x |
[16] | Burdon-Sanderson J (1872) Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula Ellis. Philos Proc Roy Soc 21: 495–496. doi: 10.1098/rspl.1872.0092 |
[17] | Carter PJ, Nimmo HG, Fewson CA, et al. (1991) Circadian rhythms in the activity of a plant protein kinase. Embo J 10: 2063–2068. |
[18] | Cermak J, Matyssek R, Kucera J (1993) Rapid response of large, drought –stressed beech trees to irrigation. Tree Physiol 12: 281–290. doi: 10.1093/treephys/12.3.281 |
[19] | Chen ZH, Hills A, Bätz U, et al. (2012) Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159: 1235–1251. doi: 10.1104/pp.112.197350 |
[20] | Comstock JP (2002) Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53: 195–200. doi: 10.1093/jexbot/53.367.195 |
[21] | Domec JC, Scholz FG, Bucci SJ, et al. (2006) Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29: 26–35. doi: 10.1111/j.1365-3040.2005.01397.x |
[22] | Etherton B, Higinbotham N (1960) Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science 131: 409–410. doi: 10.1126/science.131.3398.409 |
[23] | Farré EM (2012) The regulation of plant growth by the circadian clock. Plant Biology 14: 401–410. doi: 10.1111/j.1438-8677.2011.00548.x |
[24] | Friso G, Giacomelli L, Ytterberg AJ, et al. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16: 478–499. |
[25] | Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA 990: 87–92. |
[26] | Grams TEE, Koziolek C, Lautner S, et al. (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30, 79–84. |
[27] | Grams TEE, Lautner S, Felle HH, et al. (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32: 319–326. doi: 10.1111/j.1365-3040.2008.01922.x |
[28] | Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17: 1926–1940. doi: 10.1105/tpc.105.033035 |
[29] | Hartwell J, Smith LH, Wilkins MB, et al. (1996) Higher plant phosphoenolpyruvate carboxylase kinase is regulated by the level of translatable mRNA in response to light or a circadian rhythm. Plant J 10: 101–108. |
[30] | Hedrich R (2012) Ion channels in plants. Physiol Rev 92: 1777–1811. doi: 10.1152/physrev.00038.2011 |
[31] | Hedrich R, Schroeder JI, Fernandez JM (1987) Patch-clamp studies on higher plant cells: a perspective. Trends Biochem Sci 12: 49–52. doi: 10.1016/0968-0004(87)90025-9 |
[32] | Hedrich R, Barbier-Brygoo H, Felle H, et al. (1988) General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch-clamp survey of ion channels and proton pumps. Bot Acta 101: 7–13. doi: 10.1111/j.1438-8677.1988.tb00003.x |
[33] | Hegemann P (1997) Vision in microalgae. Planta 203: 265–274. doi: 10.1007/s004250050191 |
[34] | Hüsken D, Steudle E, Zimmermann U (1978) Pressure probe technique for measuring water relations of cells of higher plants. Plant Physiol 61: 158–163. doi: 10.1104/pp.61.2.158 |
[35] | Hütt M-Th (2013) A network view on patterns of gene expression and metabolic activity. Nova Acta Leopoldina NF 114/391: 183–199. |
[36] | Hütt M-Th, Lüttge U (2002) Nonlinear dynamics as a tool for data analysis and modelling in plant physiology. Plant Biology 4: 281–297. doi: 10.1055/s-2002-32339 |
[37] | Hütt M-Th, Lüttge U (2004) Network dynamics in plant biology: Current progress in historical perspective. Prog Bot 66: 277–310. |
[38] | Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44: 300–313. doi: 10.1111/j.1365-313X.2005.02531.x |
[39] | Koo J, Kim Y, Kim J, et al.(2007). A GUS/luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability. Plant Cell Physiol 48: 1121–1131. |
[40] | Koten O van, Snel JFH ( 1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25: 147–150. |
[41] | Kronzucker HJ, Siddiqi MY, Glass ADM, et al. (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119: 1041–1045. |
[42] | Laughlin RB (2005) A Different Universe—Reinventing Physics from the Bottom Down. Basic Books, New York. |
[43] | Lösch R (1998) Plant water relations. Prog Bot 60: 193–233. |
[44] | Lundegardh H (1950) The translocation of salts and water through wheat roots. Plant Physiol 2: 103–151. |
[45] | Lundegårdh H (1955) Mechanisms of absorption, transport, accumulation, and secretion of ions. Annu Rev Physiol 6: 1–24. |
[46] | Lundegårdh H, Burström H (1933) Untersuchungen über die Salzaufnahme der Pflanzen. III. Quantitative Beziehungen zwischen Atmung und Anionenaufnahme. Biochemische Z 261: 235–251. |
[47] | Lundeghårdh H, Burström H (1935) Untersuchungen über die Atmungsvorgänge in Pflanzenwurzeln. Biochemische Z 277: 223–249. |
[48] | Lüttge U (1986) Nocturnal water storage in plants having crassulacean acid metabolism. Planta 168: 287–289. |
[49] | Lüttge U (2000) The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism. Planta 211: 761–769. doi: 10.1007/s004250000408 |
[50] | Lüttge U (2003) Circadian rhythmicity: Is the “biological clock” hardware or software. Prog Bot 64: 277–319. |
[51] | Lüttge U (2012) Whole-plant physiology: Synergistic emergence rather than modularity. Prog Bot 74: 165–190. |
[52] | Lüttge U (2013) Modularity and emergence: biology’s challenge in understanding life. Plant Biology 14: 865–871. |
[53] | Lüttge U (2016) Transport processes—The key integrators in plant biology. Prog Bot 77: 3–65. doi: 10.1007/978-3-319-25688-7_1 |
[54] | Lüttge U, Hütt MT (2009) Talking Patterns: Communication of organisms at different levels of organization—an alternative view of systems biology. Nova Acta Leopoldina NF 96/357: 161–174. |
[55] | Lüttge U, Kluge M, Ball E (1975) Effects of osmotic gradients on vacuolar malic acid storage. A basic principle in oscillatory behavior of crassulacean acid metabolism. Plant Physiol 56: 613–616. |
[56] | Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen. Wiley-VCH. |
[57] | MacRobbie EAC (1965) The nature of the coupling between light energy and active ion transport in Nitella translucens. BBA 94: 64–73. |
[58] | Mattheck C (2006) Verborgene Gestaltgesetze in der Natur. Forschungszentrum Karlsruhe. |
[59] | Matyssek R, Maruyama S, Boyer JS (1991) Growth-induced water potentials may mobilize internal water for growth. Plant Cell Environ 14: 917–923. doi: 10.1111/j.1365-3040.1991.tb00960.x |
[60] | Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48: 399–429. doi: 10.1146/annurev.arplant.48.1.399 |
[61] | Maurel C, Santoni V, Luu DT, et al. (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12: 690–698. doi: 10.1016/j.pbi.2009.09.002 |
[62] | Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51: 659–668 |
[63] | Mayr S, Améglio T (2016) Freezing stress in tree xylem. Prog Bot 77: 381–414. doi: 10.1007/978-3-319-25688-7_13 |
[64] | McClung CR (2006) Plant circadian rhythms. Plant Cell 18: 792–803. doi: 10.1105/tpc.106.040980 |
[65] | Melcher PJ, Meinzer FC, Yount DE, et al. (1998) Comparative measurements of xylem pressure in transpiring and non-transpiring leaves by means of the pressure chamber and the xylem pressure probe. J Exp Bot 49: 1757–1760. |
[66] | Moran N, Ehrenstein G, Iwasa K, et al. (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226: 835–838. |
[67] | Nachtigall W (2010): Bionik als Wissenschaft: Erkennen―Abstrahieren―Umsetzen. Springer Verlag, Heidelberg. |
[68] | Nachtigall W, Blüchel KG (2000) Das große Buch der Bionik. Deutsche Verlagsanstalt, Stuttgart. |
[69] | Nagel G, Ollig D, Fuhrmann M, et al. (2002) Channelrhodopsin-1: A light-gated proton channel in green algae. Science 296: 2395–2398. |
[70] | Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52: 1709–1718. doi: 10.1093/pcp/pcr118 |
[71] | Neher E, Sakmann B (1976) Single channel currents recorded from membrane of denervated frog muscle fibers. Nature 260: 799–802. |
[72] | Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflüg Arch 375: 219–228. doi: 10.1007/BF00584247 |
[73] | Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24: 1–14. doi: 10.1046/j.1365-3040.2001.00661.x |
[74] | Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5: 75–80. |
[75] | Nobel PS (2009) Physicochemical and environmental plant physiology, 4Eds. Amsterdam: Academic Press. |
[76] | Nobel PS, Jordan PW (1983) Transpiration stream of desert species: resistances and capacitances for a C3, a C4 and a CAM plant. J Exp Bot 34: 1379–1391. |
[77] | O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 737–740. doi: 10.1038/353737a0 |
[78] | Pitman MG (1963) The determination of the salt relations of the cytoplasmic phase in cells of beetroot tissue. Aust J of Biol Sci 1: 647–668. |
[79] | Raven JA (1967) Light stimulation of active transport in Hydrodictyon africanum. J Gen Physiol 50: 1627–1640. doi: 10.1085/jgp.50.6.1627 |
[80] | Raven JA (1976) Transport in algal cells. Encyclopedia Plant Physiology New Series 2A, Springer Berlin Heidelberg, 129–188. |
[81] | Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46: 455–472. doi: 10.1146/annurev.ph.46.030184.002323 |
[82] | Scholander P, Bradstreet E, Hemmingsen E, et al (1965) Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148: 339–346. doi: 10.1126/science.148.3668.339 |
[83] | Schopfer P, Brennicke A (2010) Pflanzenphysiologie. 7Eds. Spektrum, Heidelberg. |
[84] | Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54: 151–173. |
[85] | Schroeder JI, Hedrich R, Fernandez JM (1984) Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312: 361–362. doi: 10.1038/312361a0 |
[86] | Shabala S, Pang J, Zhou M, et al. (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant Cell Environ 32: 194–207. doi: 10.1111/j.1365-3040.2008.01914.x |
[87] | Shabala S, White RC, Djordjevic MA, et al. (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43: 87–104. doi: 10.1071/FP15252 |
[88] | Siefritz F, Otto B, Bienert G, et al. (2004), The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37: 147–155. |
[89] | Speck T, Speck O, Neinhuis C, et al. (2011) Was die Technik von Pflanzen lernen kann–Bionik in botanischen Gärten. Verband Botanischer Gärten, Freiburg, Dresden und Bayreuth. |
[90] | Speck T, Neinhuis C (2004) Bionik, Biomimetik–Ein interdisziplinäres Forschungsgebiet mit Zukunftspotential. Naturwissdenschaftliche Rundsch 57: 177–191. |
[91] | Stancović B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115: 1083–1088. doi: 10.1104/pp.115.3.1083 |
[92] | Stancović B, Witters DL, Zawadzki T, et al. (1998) Action potentials and variation potentials in sunflower: an analysis of their relation-ships and distinguishing characteristics. Physiol Plantarum 103: 51–58. doi: 10.1034/j.1399-3054.1998.1030107.x |
[93] | Stenz HG, Weisenseel MH (1991) DC-electric field affects the growth direction and statocyte polarity of root tips (Lepidium sativum). J Plant Physiol 138: 335–344. doi: 10.1016/S0176-1617(11)80297-X |
[94] | Stenz HG, Weisenseel MH (1993) Electrotropism of maize (Zea mays L.) roots. Facts and artifacts. Plant Physiol 101: 1107–1111. |
[95] | Steudle E (2011) Hydraulic architecture of vascular plants. In: Lüttge U, Beck E, Bartels D, Plant desiccation tolerance, Springer-Heidelberg, 185–207. |
[96] | Steudle E, Smith JAC, Lüttge U (1980) Water relation parameters of individual mesophyll cells of the Crassulacean Acid Metabolism plant Kalanchoë daigremontiana. Plant Physiol 66: 1155–1163. doi: 10.1104/pp.66.6.1155 |
[97] | Tang AC, Boyer JS (2003) Root pressurization affects growth-induced water potentials and growth in dehydrated maize plants. J Exp Bot 54: 2479–2488. doi: 10.1093/jxb/erg265 |
[98] | Tyree MT (1997) The cohesion-tension theory of sap ascent: current controversies. J Exp Bot 48: 1753–1765. |
[99] | Tyree MT, Hammel HT (1972) The measurement of the turgor pressure and the water relations of plants by the pressure –bomb technique. J Exp Bot 23: 267–282. doi: 10.1093/jxb/23.1.267 |
[100] | Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin. |
[101] | Umrath K (1930) Untersuchungen über Plasma und Plasmaströmung an Characeen. IV. Potentialmessungen an Nitella mucronata mit besonderer Berücksichtigung der Erregungsleitung. Protoplasma 9: 576–597. |
[102] | Vogel S (2000) Von Grashalmen und Hochhäusern–Mechanische Schöpfungen in Natur und Technik. Wiley-VCH. |
[103] | Walker NA (1976) Membrane transport: Theoretical background. Encyclopedia of Plant Physiology New Series 2A, 36–52. |
[104] | Walker NA, Pitman MG (1976) Measurement of fluxes across membranes. Encyclopedia of Plant Physiology New Series 2A, 93–126. |
[105] | Wei J, Hongzhong L, Lei Y, et al. (2016) Enhanced photoelectric properties in dye-sensitized solar cells using TiO2 pyramid arrays. J Phys Chem 120: 9678–9684. |
[106] | Wei MC, Tyree MT, Steudle E (1999) Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiol 121: 1191–1205. |
[107] | Whitelegge JP (2003) Thylakoid proteomics. Photosynth Res 78: 265–277. doi: 10.1023/B:PRES.0000006828.65688.0d |
[108] | Zhu GL, Steudle E (1991) Water transport across maize roots: simultaneous measurements of flows at the cell and root level by double pressure probe technique. Plant Physiol 95: 305–315. doi: 10.1104/pp.95.1.305 |
[109] | Zimmermann U, Meinzer FC, Benkert R, et al. (1994) Xylem water transport: is the available evidence consistent with the cohesion theory. Plant Cell Environ 17:1169–1181. |