This paper is devoted to the complete algebraic classification of complex
Citation: Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev. The algebraic classification of nilpotent commutative algebras[J]. Electronic Research Archive, 2021, 29(6): 3909-3993. doi: 10.3934/era.2021068
This paper is devoted to the complete algebraic classification of complex
| [1] |
Classification of three-dimensional evolution algebras. Linear Algebra Appl. (2017) 524: 68-108.
|
| [2] |
The classification of $4$-dimensional Leibniz algebras. Linear Algebra Appl. (2013) 439: 273-288.
|
| [3] |
Six-dimensional nilpotent Lie algebras. Linear Algebra Appl. (2012) 436: 163-189.
|
| [4] |
The classification of 5-dimensional $p$-nilpotent restricted Lie algebras over perfect fields, I.. J. Algebra (2016) 464: 97-140.
|
| [5] |
Classification of the four-dimensional power-commutative real division algebras. Proc. Roy. Soc. Edinburgh Sect. A (2011) 141: 1207-1223.
|
| [6] |
Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not $2$. J. Algebra (2007) 309: 640-653.
|
| [7] |
On the classification of $4$-dimensional quadratic division algebras over square-ordered fields. J. London Math. Soc. (2) (2002) 65: 285-302.
|
| [8] |
A. Fernández Ouaridi, I. Kaygorodov, M. Khrypchenko and Yu. Volkov, Degenerations of nilpotent algebras, J. Pure Appl. Algebra, 226 (2022), Paper No. 106850, 21 pp. doi: 10.1016/j.jpaa.2021.106850
|
| [9] |
Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra Appl. (2016) 494: 165-218.
|
| [10] |
The classification of $n$-dimensional non-Lie Malcev algebras with $(n-4)$-dimensional annihilator. Linear Algebra Appl. (2016) 505: 32-56.
|
| [11] |
D. Jumaniyozov, I. Kaygorodov and A. Khudoyberdiyev, The algebraic classification of nilpotent commutative $\mathfrak {CD}$-algebras, Communications in Algebra, 49 (2021), 1464–1494. doi: 10.1080/00927872.2020.1837852
|
| [12] |
I. Kaygorodov, M. Khrypchenko and S. A. Lopes, The algebraic and geometric classification of nilpotent anticommutative algebras, Journal of Pure and Applied Algebra, 224 (2020), 106337, 32 pp. doi: 10.1016/j.jpaa.2020.106337
|
| [13] | I. Kaygorodov, M. Khrypchenko and S. Lopes, The algebraic classification of nilpotent algebras, arXiv: 2012.00525. |
| [14] |
I. Kaygorodov, M. Khrypchenko and Yu. Popov, The algebraic and geometric classification of nilpotent terminal algebras, J. Pure Appl. Algebra, 225 (2021), 106625, 41 pp. doi: 10.1016/j.jpaa.2020.106625
|
| [15] |
I. Kaygorodov, I. Rakhimov and Sh. K. Said Husain, The algebraic classification of nilpotent associative commutative algebras, J. Algebra Appl., 19 (2020), 2050220, 14 pp. doi: 10.1142/S0219498820502205
|
| [16] |
The variety of $2$-dimensional algebras over an algebraically closed field. Canad. J. Math. (2019) 71: 819-842.
|
| [17] |
Classification of three-dimensional zeropotent algebras over an algebraically closed field. Comm. Algebra (2017) 45: 5037-5052.
|
| [18] |
Generic finite schemes and Hochschild cocycles. Comment. Math. Helv. (1980) 55: 267-293.
|
| [19] |
The classification of two-dimensional nonassociative algebras. Results Math. (2000) 37: 120-154.
|
| [20] | T. Skjelbred and T. Sund, Sur la classification des algebres de Lie nilpotentes, C. R. Acad. Sci. Paris Sér. A-B, 286 (1978), A241–A242. |