Sympathetic Lie superalgebras are defined and some classical properties of sympathetic Lie superalgebras are given. Among the main results, we prove that any Lie superalgebra $ L $ contains a maximal sympathetic graded ideal and we obtain some properties about sympathetic decomposition. More specifically, we study a general sympathetic Lie superalgebra $ L $ with graded ideals $ I $, $ J $ and $ S $ such that $ L = I\oplus J $ and $ L/S $ is a sympathetic Lie superalgebra, and we obtain some properties of $ L/S $. Furthermore, under certain assumptions on $ L $ we prove that the derivation algebra $ \mathrm{Der}(L) $ is sympathetic and that if in addition $ L $ is indecomposable, then $ \mathrm{Der}(L) $ is simply sympathetic.
Citation: Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras[J]. Electronic Research Archive, 2021, 29(5): 2945-2957. doi: 10.3934/era.2021020
Abstract
Sympathetic Lie superalgebras are defined and some classical properties of sympathetic Lie superalgebras are given. Among the main results, we prove that any Lie superalgebra $ L $ contains a maximal sympathetic graded ideal and we obtain some properties about sympathetic decomposition. More specifically, we study a general sympathetic Lie superalgebra $ L $ with graded ideals $ I $, $ J $ and $ S $ such that $ L = I\oplus J $ and $ L/S $ is a sympathetic Lie superalgebra, and we obtain some properties of $ L/S $. Furthermore, under certain assumptions on $ L $ we prove that the derivation algebra $ \mathrm{Der}(L) $ is sympathetic and that if in addition $ L $ is indecomposable, then $ \mathrm{Der}(L) $ is simply sympathetic.
References
|
[1]
|
Algèbres de Lie $\mathfrak{g}$ satisfaisant $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$, $\text{Der}\mathfrak{g} = \text{ad}\mathfrak{g}$. (French) C. R. Acad. Sci. Paris Sér. I Math. (1988) 306: 523-525. |
|
[2]
|
Certaines propriétés d'une classe d'algèbres de Lie qui généralisent les algèbres de Lie semi-simples. Ann. Fac. Sci. Toulouse Math. (1991) 12: 29-35.
|
|
[3]
|
Structure of perfect Lie algebras without center and outer derivations. Ann. Fac. Sci. Toulouse Math. (1996) 5: 203-231.
|
|
[4]
|
On complete Lie superalgebras. Commun. Korean Math. Soc. (1996) 11: 323-334. |
|
[5]
|
N. Jacobson, Lie Algebras, Willey New York, 1962.
|
|
[6]
|
Some complete Lie algebras. J. Algebra (1996) 186: 807-817.
|
|
[7]
|
Lie superalgebras. Advances in Math. (1977) 26: 8-96.
|
|
[8]
|
Characteristically nilpotent algebras. Canadian J. Math. (1971) 23: 222-235.
|
|
[9]
|
M. Scheunert, The Theory of Lie Superalgebra, Lecture notes in mathematics 716, Springer-verlag Berlin Heidelberg New-York, 1979.
|
|
[10]
|
Derivation algebras of centerless perfect Lie algebras are complete. J. Algebra (2005) 285: 508-515.
|