Citation: Sandrine Bouchet, Marion Piedfer, Santos Susin, Daniel Dauzonne, Brigitte Bauvois. In vitro activity of some flavonoid derivatives on human leukemic myeloid cells: evidence for aminopeptidase-N (CD13) inhibition, antiproliferative and cell death properties[J]. AIMS Molecular Science, 2016, 3(3): 368-385. doi: 10.3934/molsci.2016.3.368
[1] | King ME, Rowe JM (2007) Recent developments in acute myelogenous leukemia therapy. Oncologist 12 Suppl 2: 14-21. |
[2] | Robak T, Wierzbowska A (2009) Current and emerging therapies for acute myeloid leukemia. Clin Ther 31 Pt 2: 2349-2370. |
[3] | Steele VE, Boone CW, Dauzonne D, et al. (2002) Correlation between electron-donating ability of a series of 3-nitroflavones and their efficacy to inhibit the onset and progression of aberrant crypt foci in the rat colon. Cancer Res 62: 6506-6509. |
[4] | Cardenas M, Marder M, Blank VC, et al. (2006) Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg Med Chem 14: 2966-2971. doi: 10.1016/j.bmc.2005.12.021 |
[5] | Li Y, Fang H, Xu W (2007) Recent advance in the research of flavonoids as anticancer agents. Mini Rev Med Chem 7: 663-678. doi: 10.2174/138955707781024463 |
[6] | Singh M, Kaur M, Silakari O (2014) Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem 84: 206-239. doi: 10.1016/j.ejmech.2014.07.013 |
[7] | Chabot GG, Touil YS, Pham MH, et al. (2010) Flavonoids in cancer prevention and therapy: chemistry, pharamcology, mechanisms of action, and perspectives for cancer drugdiscovery. In: Moulay A, editor. Alternative and complementary therapies for cancer. Springer US, 583-612. |
[8] | Hou DX, Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 13: 691-719. doi: 10.1089/ars.2009.2816 |
[9] | Ravishankar D, Rajora AK, Greco F, et al. (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 45: 2821-2831. doi: 10.1016/j.biocel.2013.10.004 |
[10] | Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 35: 57-68. doi: 10.1016/j.ctrv.2008.09.005 |
[11] | Liesveld JL, Abboud CN, Lu C, et al. (2003) Flavonoid effects on normal and leukemic cells. Leuk Res 27: 517-527. doi: 10.1016/S0145-2126(02)00265-5 |
[12] | Newcomb EW (2004) Flavopiridol: pleiotropic biological effects enhance its anti-cancer activity. Anticancer Drugs 15: 411-419. doi: 10.1097/01.cad.0000127332.06439.47 |
[13] | Cheng S, Gao N, Zhang Z, et al. (2010) Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax. Clin Cancer Res 16: 5679-5691. doi: 10.1158/1078-0432.CCR-10-1565 |
[14] | Fathi AT, Karp JE (2009) New agents in acute myeloid leukemia: beyond cytarabine and anthracyclines. Curr Oncol Rep 11: 346-352. doi: 10.1007/s11912-009-0047-x |
[15] | Blum W, Phelps MA, Klisovic RB, et al. (2010) Phase I clinical and pharmacokinetic study of a novel schedule of flavopiridol in relapsed or refractory acute leukemias. Haematologica 95: 1098-1105. doi: 10.3324/haematol.2009.017103 |
[16] | Karp JE, Smith BD, Resar LS, et al. (2011) Phase 1 and pharmacokinetic study of bolus-infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias. Blood 117: 3302-3310. doi: 10.1182/blood-2010-09-310862 |
[17] | Zeidner JF, Foster MC, Blackford AL, et al. (2015) Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica 100: 1172-1179. doi: 10.3324/haematol.2015.125849 |
[18] | Bauvois B, Puiffe ML, Bongui JB, et al. (2003) Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13. J Med Chem 46: 3900-3913. doi: 10.1021/jm021109f |
[19] | Quiney C, Dauzonne D, Kern C, et al. (2004) Flavones and polyphenols inhibit the NO pathway during apoptosis of leukemia B-cells. Leuk Res 28: 851-861. doi: 10.1016/j.leukres.2003.12.003 |
[20] | Piedfer M, Bouchet S, Tang R, et al. (2013) p70S6 kinase is a target of the novel proteasome inhibitor 3,3'-diamino-4'-methoxyflavone during apoptosis in human myeloid tumor cells. Biochim Biophys Acta 1833: 1316-1328. doi: 10.1016/j.bbamcr.2013.02.016 |
[21] | Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26: 88-130. |
[22] | Bouchet S, Tang R, Fava F, et al. (2016) The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13. Oncotarget 7: 19445-19467. |
[23] | Klobusicka M, Kusenda J, Babusikova O (2005) Myeloid enzymes profile related to the immunophenotypic characteristics of blast cells from patients with acute myeloid leukemia (AML) at diagnosis. Neoplasma 52: 211-218. |
[24] | Taussig DC, Pearce DJ, Simpson C, et al. (2005) Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 106: 4086-4092. doi: 10.1182/blood-2005-03-1072 |
[25] | Piedfer M, Dauzonne D, Tang R, et al. (2011) Aminopeptidase-N/CD13 is a potential proapoptotic target in human myeloid tumor cells. Faseb J 25: 2831-2842. doi: 10.1096/fj.11-181396 |
[26] | Wickstrom M, Larsson R, Nygren P, et al. (2011) Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 102: 501-508. doi: 10.1111/j.1349-7006.2010.01826.x |
[27] | Dauzonne D, Folléas B, Martinez L, et al. (1997) Synthesis and in vitro cytotoxicity of a series of 3-aminoflavones. . Eur J Med Chem 32: 71-82. doi: 10.1016/S0223-5234(97)84363-2 |
[28] | Dauzonne D, Demerseman P (1990) A convenient synthesis of 3-chloro-3,4-dihydro-4-hydroxy-3-nitro-2-p henyl-2H-1-benzopyrans. Synthesis 1: 66-70. |
[29] | Dauzonne D, Grandjean C (1992) Synthesis of 2-Aryl-3-nitro-4H-1-benzopyran-4-ones. Synthesis 7: 677-680. |
[30] | Pham MH, Auzeil N, Regazzetti A, et al. (2007) Identification of new flavone-8-acetic acid metabolites using mouse microsomes and comparison with human microsomes. Drug Metab Dispos 35: 2023-2034. doi: 10.1124/dmd.107.017012 |
[31] | Ceccaldi A, Rajavelu A, Champion C, et al. (2011) C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Chembiochem 12: 1337-1345. doi: 10.1002/cbic.201100130 |
[32] | Lanotte M, Martin-Thouvenin V, Najman S, et al. (1991) NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77: 1080-1086. |
[33] | Laouar A, Wietzerbin J, Bauvois B (1993) Divergent regulation of cell surface protease expression in HL-60 cells differentiated into macrophages with granulocyte macrophage colony stimulating factor or neutrophils with retinoic acid. Int Immunol 5: 965-973. doi: 10.1093/intimm/5.8.965 |
[34] | Laouar A, Villiers C, Sanceau J, et al. (1993) Inactivation of interleukin-6 in vitro by monoblastic U937 cell plasma membranes involves both protease and peptidyl-transferase activities. Eur J Biochem 215: 825-831. doi: 10.1111/j.1432-1033.1993.tb18098.x |
[35] | Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11: 3155-3162. doi: 10.1158/1078-0432.CCR-04-2223 |
[36] | Wang ZB, Liu YQ, Cui YF (2005) Pathways to caspase activation. Cell Biol Int 29: 489-496. doi: 10.1016/j.cellbi.2005.04.001 |
[37] | Antczak C, De Meester I, Bauvois B (2001) Transmembrane proteases as disease markers and targets for therapy. J Biol Regul Homeost Agents 15: 130-139. |
[38] | Bauvois B (2001) Transmembrane proteases in focus: diversity and redundancy? J Leukoc Biol 70: 11-17. |
[39] | Bauvois B (2004) Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis? Oncogene 23: 317-329. doi: 10.1038/sj.onc.1207124 |
[40] | Mina-Osorio P (2008) The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med 14: 361-371. doi: 10.1016/j.molmed.2008.06.003 |
[41] | Antczak C, De Meester I, Bauvois B (2001) Ectopeptidases in pathophysiology. Bioessays 23: 251-260. |
[42] | Grujic M, Renko M (2002) Aminopeptidase inhibitors bestatin and actinonin inhibit cell proliferation of myeloma cells predominantly by intracellular interactions. Cancer Lett 182: 113-119. doi: 10.1016/S0304-3835(02)00086-1 |
[43] | Winnicka B, O'Conor C, Schacke W, et al. (2010) CD13 is dispensable for normal hematopoiesis and myeloid cell functions in the mouse. J Leukoc Biol 88: 347-359. doi: 10.1189/jlb.0210065 |
[44] | Scaffidi C, Schmitz I, Zha J, et al. (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274: 22532-22538. doi: 10.1074/jbc.274.32.22532 |
[45] | Galluzzi L, Vitale I, Abrams JM, et al. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107-120. doi: 10.1038/cdd.2011.96 |
[46] | Galluzzi L, Kepp O, Krautwald S, et al. (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35: 24-32. doi: 10.1016/j.semcdb.2014.02.006 |
[47] | Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517: 311-320. doi: 10.1038/nature14191 |
[48] | Baritaud M, Boujrad H, Lorenzo HK, et al. (2010) Histone H2AX: The missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle 9: 3166-3173. doi: 10.4161/cc.9.16.12887 |
[49] | Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, et al. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15: 135-147. |
[50] | Bonora M, Wieckowski MR, Chinopoulos C, et al. (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34: 1475-1486. doi: 10.1038/onc.2014.96 |
[51] | Yuan Z, Long C, Junming T, et al. (2012) Quercetin-induced apoptosis of HL-60 cells by reducing PI3K/Akt. Mol Biol Rep 39: 7785-7793. doi: 10.1007/s11033-012-1621-0 |
[52] | Lee WJ, Hsiao M, Chang JL, et al. (2015) Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch Toxicol 89: 1103-1117. doi: 10.1007/s00204-014-1300-0 |
[53] | Chen YC, Shen SC, Lee WR, et al. (2002) Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch Toxicol 76: 351-359. doi: 10.1007/s00204-002-0346-6 |
[54] | Hu C, Xu M, Qin R, et al. (2015) Wogonin induces apoptosis and endoplasmic reticulum stress in HL-60 leukemia cells through inhibition of the PI3K-AKT signaling pathway. Oncol Rep 33: 3146-3154. |
[55] | Hsiao PC, Lee WJ, Yang SF, et al. (2014) Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumour Biol 35: 11903-11911. doi: 10.1007/s13277-014-2457-0 |
[56] | Budhraja A, Gao N, Zhang Z, et al. (2012) Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol Cancer Ther 11: 132-142. doi: 10.1158/1535-7163.MCT-11-0343 |
[57] | Ruela-de-Sousa RR, Fuhler GM, Blom N, et al. (2010) Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis 1: e19. doi: 10.1038/cddis.2009.18 |
[58] | Park C, Lee WS, Go SI, et al. (2014) Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells. Int J Mol Sci 16: 645-659. doi: 10.3390/ijms16010645 |
[59] | Gao H, Liu Y, Li K, et al. (2016) Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer. Am J Transl Res 8: 1115-1132. |
[60] | Cardenas MG, Blank VC, Marder MN, et al. (2012) 2'-Nitroflavone induces apoptosis and modulates mitogen-activated protein kinase pathways in human leukaemia cells. Anticancer Drugs 23: 815-826. doi: 10.1097/CAD.0b013e328353f947 |
[61] | Chang H, Lin H, Yi L, et al. (2010) 3,6-Dihydroxyflavone induces apoptosis in leukemia HL-60 cell via reactive oxygen species-mediated p38 MAPK/JNK pathway. Eur J Pharmacol 648: 31-38. doi: 10.1016/j.ejphar.2010.08.020 |
[62] | Rosato RR, Dai Y, Almenara JA, et al. (2004) Potent antileukemic interactions between flavopiridol and TRAIL/Apo2L involve flavopiridol-mediated XIAP downregulation. Leukemia 18: 1780-1788. doi: 10.1038/sj.leu.2403491 |
[63] | Delmulle L, Vanden Berghe T, Keukeleire DD, et al. (2008) Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother Res 22: 197-203. |
[64] | Wu PP, Kuo SC, Huang WW, et al. (2009) (-)-Epigallocatechin gallate induced apoptosis in human adrenal cancer NCI-H295 cells through caspase-dependent and caspase-independent pathway. Anticancer Res 29: 1435-1442. |
[65] | Zhang Y, Yang ND, Zhou F, et al. (2012) (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One 7: e46749. doi: 10.1371/journal.pone.0046749 |
[66] | Wang G, Wang JJ, Yang GY, et al. (2012) Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine 7: 271-280. doi: 10.2217/nnm.11.186 |
[67] | Liao H, Bao X, Zhu J, et al. (2015) O-Alkylated derivatives of quercetin induce apoptosis of MCF-7 cells via a caspase-independent mitochondrial pathway. Chem Biol Interact 242: 91-98. doi: 10.1016/j.cbi.2015.09.022 |
[68] | Lindsay CK, Gomez DE, Thorgeirsson UP (1996) Effect of flavone acetic acid on endothelial cell proliferation: evidence for antiangiogenic properties. Anticancer Res 16: 425-431. |
[69] | Granci V, Dupertuis YM, Pichard C (2010) Angiogenesis as a potential target of pharmaconutrients in cancer therapy. Curr Opin Clin Nutr Metab Care 13: 417-422. doi: 10.1097/MCO.0b013e3283392656 |
[70] | Prasad S, Phromnoi K, Yadav VR, et al. (2010) Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med 76: 1044-1063. doi: 10.1055/s-0030-1250111 |
[71] | Asensi M, Ortega A, Mena S, et al. (2011) Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 48: 197-216. doi: 10.3109/10408363.2011.631268 |
[72] | Pham MH, Dauzonne D, Chabot GG (2016) Not flavone-8-acetic acid (FAA) but its murine metabolite 6-OH-FAA exhibits remarkable antivascular activities in vitro. Anti-Cancer Drugs 27: 398-406. doi: 10.1097/CAD.0000000000000341 |
[73] | Granja A, Pinheiro M, Reis S (2016) Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy. Nutrients 8: 307. doi: 10.3390/nu8050307 |
[74] | Bauvois B (2012) New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Biophys Acta 1825: 29-36. |
[75] | Trujillo A, McGee C, Cogle CR (2012) Angiogenesis in acute myeloid leukemia and opportunities for novel therapies. J Oncol 2012: 128608. |
[76] | Haouas H (2014) Angiogenesis and acute myeloid leukemia. Hematology 19: 311-323. doi: 10.1179/1607845413Y.0000000139 |
[77] | Klein G, Vellenga E, Fraaije MW, et al. (2004) The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 50: 87-100. doi: 10.1016/j.critrevonc.2003.09.001 |
[78] | Bouchet S, Tang R, Fava F, et al. (2014) Targeting CD13 (aminopeptidase-N) in turn downregulates ADAM17 by internalization in acute myeloid leukaemia cells. Oncotarget 5: 8211-8222. doi: 10.18632/oncotarget.1788 |
[79] | Bouchet S, Bauvois B (2014) Neutrophil Gelatinase-Associated Lipocalin (NGAL), Pro-Matrix Metalloproteinase-9 (pro-MMP-9) and Their Complex Pro-MMP-9/NGAL in Leukaemias. Cancers (Basel) 6: 796-812. doi: 10.3390/cancers6020796 |