Research article Special Issues

Large deviations for a binary collision model: energy evaporation

  • Received: 29 September 2021 Revised: 24 November 2021 Accepted: 26 November 2021 Published: 04 January 2022
  • We analyze the large deviations for a discrete energy Kac-like walk. In particular, we exhibit a path, with probability exponentially small in the number of particles, that looses energy.

    Citation: Giada Basile, Dario Benedetto, Emanuele Caglioti, Lorenzo Bertini. Large deviations for a binary collision model: energy evaporation[J]. Mathematics in Engineering, 2023, 5(1): 1-12. doi: 10.3934/mine.2023001

    Related Papers:

  • We analyze the large deviations for a discrete energy Kac-like walk. In particular, we exhibit a path, with probability exponentially small in the number of particles, that looses energy.



    加载中


    [1] G. Basile, D. Benedetto, L. Bertini, E. Caglioti, On the probability of observing energy increasing solutions to homegeneous Boltzmann equation, unpublished work.
    [2] G. Basile, D. Benedetto, L. Bertini, C. Orrieri, Large deviations for Kac-Like Walks, J. Stat. Phys., 184 (2021), 10. http://dx.doi.org/10.1007/s10955-021-02794-2 doi: 10.1007/s10955-021-02794-2
    [3] L. Bertini, D. Gabrielli, J. L. Lebowitz, Large deviations for a stochastic model of heat flow, J. Stat. Phys., 121 (2005), 843–885. http://dx.doi.org/10.1007/s10955-005-5527-2 doi: 10.1007/s10955-005-5527-2
    [4] T. Bodineau, I. Gallagher, L. Saint-Raymond, S. Simonella, Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations, 2021, arXiv: 2008.10403.
    [5] F. Bouchet, Is the Boltzmann equation reversible? A large deviation perspective on the irreversibility paradox, J. Stat. Phys., 181 (2020), 515–550. http://dx.doi.org/10.1007/s10955-020-02588-y doi: 10.1007/s10955-020-02588-y
    [6] D. Heydecker, Large deviations of Kac's conservative particle system and energy non-conserving solutions to the Boltzmann equation: a counterexample to the predicted rate function, 2021, arXiv: 2103.14550.
    [7] C. Kipnis, C. Marchioro, E. Presutti, Heat flow in an exactly solvable model, J. Stat. Phys., 27 (1982), 65–74. http://dx.doi.org/10.1007/BF01011740 doi: 10.1007/BF01011740
    [8] C. Léonard, On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations, Probab. Th. Rel. Fields, 101 (1995), 1–44. http://dx.doi.org/10.1007/BF01192194 doi: 10.1007/BF01192194
    [9] T. M. Liggett, Continuous time Markov processes: an introduction, Providence: American Mathematical Society, 2010.
    [10] X. Lu, B. Wennberg, Solutions with increasing energy for the spatially homogeneous Boltzmann equation, Nonlinear Anal. Real, 3 (2002), 243–258. http://dx.doi.org/10.1016/S1468-1218(01)00026-8 doi: 10.1016/S1468-1218(01)00026-8
    [11] M. Mariani, A $\Gamma$-convergence approach to large deviations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XVIII (2018), 951–976. http://dx.doi.org/10.2422/2036-2145.201301_010 doi: 10.2422/2036-2145.201301_010
    [12] S. Mischler, B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. Henri Poincaré, Analyse non linéaire, 16 (1999), 467–501. http://dx.doi.org/10.1016/S1468-1218(01)00026-8 doi: 10.1016/S1468-1218(01)00026-8
    [13] V. V. Petrov, Sums of independent random variables, Berlin, Heidelberg: Springer, 1975. http://dx.doi.org/10.1007/978-3-642-65809-9
    [14] J. Quastel, H.-T. Yau, Lattice gases, large deviations, and the incompressible Navier-Stokes equations, Ann. Math., 148 (1998), 51–108.
    [15] F. Rezakhanlou, Large deviations from a kinetic limit, Ann. Probab., 26 (1998), 1259–1340. http://dx.doi.org/10.1214/aop/1022855753 doi: 10.1214/aop/1022855753
    [16] A. S. Sznitman, Topics in propagation of chaos, In: Ecole d'Eté de Probabilités de Saint-Flour XIX–1989, Berlin, Heidelberg: Springer, 1991,165–251. http://dx.doi.org/10.1007/BFb0085169
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1929) PDF downloads(248) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog