Citation: Thomas Bintsis. Microbial pollution and food safety[J]. AIMS Microbiology, 2018, 4(3): 377-396. doi: 10.3934/microbiol.2018.3.377
[1] | Akanele AE, Chukwu USMO, Ahudie BCM (2016) Microbiological contamination of food: the mechanisms, impacts and prevention. Int J Sci Technol Res 5: 65–78. |
[2] | Bintsis T (2017) Foodborne pathogens. AIMS Microbiol 3: 529–563. doi: 10.3934/microbiol.2017.3.529 |
[3] | Behravesh CB, Williams IT, Tauxe RV (2012) Emerging foodborne pathogens and problems: expanding prevention efforts before slaughter or harvest, In: Improving food safety through a one health approach, Washington: National Academies Press, 307–331. |
[4] | Miller JM, Griffin PM (2012) One Health through eyes of clinical and public health microbiology. Microbe 7: 23–27. |
[5] | CDC, Eight Multistate Outbreaks of Human Salmonella Infections Linked to Live Poultry in Backyard Flocks (Final Update), 2016. Available from: https://www.cdc.gov/salmonella/ live-poultry-05-16/. |
[6] | CDC, Multistate Outbreak of Human Salmonella Altona and Salmonella Johannesburg Infections Linked to Chicks and Ducklings (Final Update), 2011. Available from: https://www.cdc.gov/salmonella/2011/chicks-ducklings-10-6-2011.html. |
[7] | Loharikar ABE, Schwensohn C, Weninger S, et al. (2012) Four multistate outbreaks of human Salmonella infections associated with live poultry contact, United States, 2009. Zoonoses Public Hlth 59: 347–354. doi: 10.1111/j.1863-2378.2012.01461.x |
[8] | Schlegelova JN, Apravn IE, Dendis M, et al. (2004) Beef carcass contamination in a slaughterhouse and prevalence of resistance to antimicrobial drugs in isolates of selected microbial species. Meat Sci 66: 557–565. doi: 10.1016/S0309-1740(03)00159-1 |
[9] | Lavilla LL, Benomar NG, Alvez A (2013) Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production. Int J Food Microbiol 161: 97–106. doi: 10.1016/j.ijfoodmicro.2012.11.028 |
[10] | Bakhtiary F, Sayevand HR, Remely M, et al. (2016) Evaluation of bacterial contamination sources in meat production line. J Food Quality 39: 750–756. doi: 10.1111/jfq.12243 |
[11] | Bell BP, Goldof M, Griffin PM, et al. (1994) A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA 272: 1349–1353. |
[12] | CDC, Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2011 (Final Report). Department of Health and Human Services, 2012. Available from: https://www.cdc.gov/foodnet/PDFs/2012_annual_report_508c.pdf. |
[13] | Loneragan GH, Brashears MM (2005) Pre-harvest interventions to reduce carriage of E. coli O157 by harvest-ready feedlot cattle. Meat Sci 71: 72–78. |
[14] | FDA, Prevention of Salmonella Enteritidis in Shell Eggs During Production, Storage, and Transportation, 2011. Available from: https://www.fda.gov/downloads/Food/GuidanceRegulation/UCM285137.pdf. |
[15] | Egg Info, British Lion Eggs, 2018. Available from: https://www.egginfo.co.uk/british-lion-eggs. |
[16] | Baker MG, Kvalsvig A, Zhang J, et al. (2012) Declining Guillain-Barre syndrome after campylobacteriosis control, New Zealand, 1988–2010. Emerg Infect Dis 18: 226–233. doi: 10.3201/eid1802.111126 |
[17] | Sears A, Baker MG, Wilson N, et al. (2011) Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis 17: 1007–1015. doi: 10.3201/eid/1706.101272 |
[18] | Tustin A, Laberge K, Micheal P, et al. (2011) A national epidemic of campylobacteriosis in Iceland, lessons learned. Zoonoses Public Hlth 58: 440–447. doi: 10.1111/j.1863-2378.2010.01387.x |
[19] | Mumma GA, Griffin PM, Meltzer MI, et al. (2004) Egg quality assurance programs and egg-associated Salmonella Enteritidis infections, United States. Emerg Infect Dis 10: 1782–1789. doi: 10.3201/eid1010.040189 |
[20] | Jacob ME, Callaway TR, Nagaraja TG (2009) Dietary interactions and interventions affecting Escherichia coli O157 colonization and shedding in cattle. Foodborne Pathog Dis 6: 785–792. doi: 10.1089/fpd.2009.0306 |
[21] | Basler C, Nguyen TA, Anderson TC (2016) Outbreaks of human Salmonella infections associated with live poultry, United States, 1990–2014. Emerg Infect Dis 22: 1705–1711. doi: 10.3201/eid2210.150765 |
[22] | Dorny P, Praet N, Deckers N, et al. (2009) Emerging food-borne parasites. Vet Parasitol 163: 196–206. doi: 10.1016/j.vetpar.2009.05.026 |
[23] | Fayera R, Morgan U, Upton SJ (2000) Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol 30: 1305–1322. doi: 10.1016/S0020-7519(00)00135-1 |
[24] | Smith HV, Robertson LJ, Campbell AT (1993) Cryptosporidium and cryptosporidiosis. Part 2. Future technologies and state of the art research. Eur Microbiol 2: 22–29. |
[25] | Benenson MW, Takafuji ET, Lemon SM, et al. (1982) Oocyst-transmitted toxoplasmosis associated with the ingestion of contaminated water. New Engl J Med 307: 666–669. doi: 10.1056/NEJM198209093071107 |
[26] | Bowie WR, King AE, Werker DH, et al. (1997) Outbreak of toxoplasmosis associated with municipal drinking water. Lancet 350: 173–177. doi: 10.1016/S0140-6736(96)11105-3 |
[27] | Slifko TR, Smith HV, Rose JB (2000) Emerging parasite zoonoses associated with water and food. Int J Parasitol 30: 1379–1393. doi: 10.1016/S0020-7519(00)00128-4 |
[28] | McIntyre L, Hoang L, Ong CSL, et al. (2000) Evaluation of molecular techniques to biotype Giardia duodenalis collected during an outbreak. J Parasitol 86: 172–177. doi: 10.1645/0022-3395(2000)086[0172:EOMTTB]2.0.CO;2 |
[29] | Keiser J, Utzinger J (2005) Emerging foodborne trematodiasis. Emerg Infect Dis 11: 1507–1514. doi: 10.3201/eid1110.050614 |
[30] | Solo-Gabrielle H, Neumeister S (1996) US outbreaks of cryptosporidiosis. J Am Water Works Ass 88: 76–86. |
[31] | Rose JB (1997) Environmental ecology of Cryptosporidium and public health implications. Annu Rev Publ Health 18: 135–161. doi: 10.1146/annurev.publhealth.18.1.135 |
[32] | Smith HV, Rose JB (1990) Waterborne cryptosporidiosis. Parasitol Today 6: 8–12. doi: 10.1016/0169-4758(90)90378-H |
[33] | Jakubowski W, Boutros S, Faber W, et al. (1996) Environmental methods for Cryptosporidium. J Am Water Works Ass 88: 107–121. |
[34] | Chai LY, Murrell KD, Lymbery AJ (2005) Fish-borne parasitic zoonoses: Status and issues. Int J Parasitol 35: 1233–1254. doi: 10.1016/j.ijpara.2005.07.013 |
[35] | Khamboonraung C, Keawvichit R, Wongworapat K, et al. (1997) Application of hazard analysis critical control point (HAACP) as a possible control measure for Opisthorchis viverrini infection in cultured carp (Puntius gonionotus). Se Asian J Trop Med 28: 65–72. |
[36] | FAO/WHO, Code of Practice for fish and Fishery products, 2003. Available from: www.fao.org/input/download/standards/10273/CXP_052e.pdf. |
[37] | Graczyk TK, Knight R, Tamang L (2005) Mechanical transmission of human protozoan parasites by insects. Clin Microbiol Rev 18: 128–132. doi: 10.1128/CMR.18.1.128-132.2005 |
[38] | Koopmans M, von Bonsdor CH, Vinje J, et al. (2002) Foodborne viruses. FEMS Microbiol Rev 26: 187–205. doi: 10.1111/j.1574-6976.2002.tb00610.x |
[39] | Berg D, Kohn M, Farley T, et al. (2000) Multistate outbreaks of acute gastroenteritis traced to fecal-contaminated oysters harvested in Louisiana. J Infect Dis 181: S381–S386. doi: 10.1086/315581 |
[40] | Sugieda M, Nakajima K, Nakajima S (1996) Outbreaks of Norwalk-like virus-associated gastroenteritis traced to shellfish: coexistence of two genotypes in one specimen. Epidemiol Infect 116: 339–346. doi: 10.1017/S0950268800052663 |
[41] | Lees D (2000) Viruses and bivalve shellfish. Int J Food Microbiol 59: 81–116. doi: 10.1016/S0168-1605(00)00248-8 |
[42] | Pönkä A, Maunula L, von Bonsdorff CH, et al. (1999) Outbreak of calicivirus gastroenteritis associated with eating frozen raspberries. Eurosurveillance 4: 66–69. doi: 10.2807/esm.04.06.00056-en |
[43] | Niu MT, Polish LB, Robertson BH, et al. (1992) Multistate outbreak of hepatitis A associated with frozen strawberries. J Infect Dis 166: 518–524. doi: 10.1093/infdis/166.3.518 |
[44] | Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137: 307–315. doi: 10.1017/S0950268808001969 |
[45] | Sivapalasingam S, Friedman CR, Cohen L, et al. (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Protect 67: 2342–2353. doi: 10.4315/0362-028X-67.10.2342 |
[46] | Ackers ML, Mahon BE, Leahy E, et al. (1998) An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption. J Infect Dis 177: 1588–1593. doi: 10.1086/515323 |
[47] | Hancock DD, Besser TE, Kinsel ML, et al. (1994) The prevalence of Escherichia coli O157:H7 in dairy and beef cattle in Washington State. Epidemiol Infect 113: 199–207. doi: 10.1017/S0950268800051633 |
[48] | Cieslak PR, Barrett TJ, Griffin PM (1993) Escherichia coli O157:H7 infection from a manured garden. Lancet 342: 367. |
[49] | Kudva IT, Hatfield PG, Hovde CJ (1996) Escherichia coli O157:H7 in microbial flora of sheep. J Clin Microbiol 34: 431–433. |
[50] | Rice DH, Hancock DD, Besser TE (1995) Verotoxigenic E. coli O157 colonization of wild deer and range cattle. Vet Rec 137: 524. |
[51] | CDC, Update on multi-state outbreak of E. coli O157:H7 infections from fresh spinach, 2006. Available from: http://www.cdc.gov/foodborne/ecolispinach/100606.htm. |
[52] | Wendel AM, Sharapov U, Grant J, et al. (2009) Multistate outbreak of Escherichia coli O157:H7 infection associated with consumption of packaged spinach, August–September 2006: the Wisconsin investigation. Clin Infect Dis 48: 1079–1086. doi: 10.1086/597399 |
[53] | Gardner TJ, Fitzgerald C, Xavier C, et al. (2011) Outbreak of campylobacteriosis associated with consumption of raw peas. Clin Infect Dis 53: 26–32. doi: 10.1093/cid/cir249 |
[54] | Besser RE, Lett SM, Weber JT, et al. (1993) An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA 269: 2217–2220. doi: 10.1001/jama.1993.03500170047032 |
[55] | CDC (1997) Outbreaks of Escherichia coli O157:H7 infection and cryptosporidiosis associated with drinking unpasteurized apple cider. MMWR-Morbid Mortal W 46: 4–8. |
[56] | Laidler MR, Tourdjman M, Buser GL, et al. (2013) Escherichia coli O157:H7 infections associated with consumption of locally grown strawberries contaminated by deer. Clin Infect Dis 57: 1129–1134. doi: 10.1093/cid/cit468 |
[57] | Söderström A, Ŏsterberg P, Lindqvist A, et al. (2008) A large Escherichia coli O157 outbreak in Sweden associated with locally produced lettuce. Foodborne Pathog Dis 5: 339–348. doi: 10.1089/fpd.2007.0065 |
[58] | FDA/CFSAN, Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Fresh-cut Fruits and Vegetables, 2008. Available from: http://www.fda.gov/food/guidancecomp lianceregulatoryinformation/guidancedocuments/produceandplanproducts/ucm064458.htm. |
[59] | Hilborn ED, Mermin JH, Mshar PA, et al. (1999) A multistate outbreak of Escherichia coli O157:H7 infections associated with consumption of mesclun lettuce. JAMA-Inter Med 159: 1758–1764. doi: 10.1001/archinte.159.15.1758 |
[60] | Gelting RJ, Baloch MA, Zarate-Bermudez MA, et al. (2011) Irrigation water issues potentially related to the 2006 multistate E.coli O157:H7 outbreak associated with spinach. Agr Water Manage 98: 1395–1402. |
[61] | Wachtel MR, Whitehand LC, Mandrell RE (2002) Prevalence of Escherichia coli associated with a cabbage crop inadvertently irrigated with partially treated sewage wastewater. J Food Protect 65: 471–475. doi: 10.4315/0362-028X-65.3.471 |
[62] | Herwaldt BL (2000) Cyclospora cayetanensis: A review, focusing on the outbreaks of cyclosporiasis in the 1990s. Clin Infect Dis 31: 1040–1057. doi: 10.1086/314051 |
[63] | Chatziprodromidou IP, Bellou M, Vantarakis G, et al. (2018) Viral outbreaks linked to fresh produce consumption: a systematic review. J Appl Microbiol 124: 932–942. doi: 10.1111/jam.13747 |
[64] | Millard PS, Gensheimer KF, Addiss DG, et al. (1994) An outbreak of cryptosporidiosis from fresh-pressed apple cider. JAMA 272: 592–596. doi: 10.1001/jama.1994.03520080034035 |
[65] | Orlandi PA, Lampel KA (2000) Extraction-free, filter-based template preparation for rapid and sensitive PCR detection of pathogenic parasitic protozoa. J Clin Microbiol 38: 2271–2277. |
[66] | Dawson D (2005) Foodborne protozoan parasites. Int J Food Microbiol 103: 207–227. doi: 10.1016/j.ijfoodmicro.2004.12.032 |
[67] | Herwaldt BL, Ackers ML (1997) An outbreak in 1996 of cyclosporiasis associated with imported raspberries. New Engl J Med 336: 1548–1556. doi: 10.1056/NEJM199705293362202 |
[68] | Seymour IJ, Appleton H (2001) Foodborne viruses and fresh produce. J Appl Microbiol 91: 759–773. doi: 10.1046/j.1365-2672.2001.01427.x |
[69] | Oron G, Goemans M, Manor Y, et al. (1995) Poliovirus distribution in the soil-plant system under reuse of secondary wastewater. Water Res 29: 1069–1078. doi: 10.1016/0043-1354(94)00257-8 |
[70] | Nasser AM (1994) Prevalence and fate of hepatitis A virus in water. Crit Rev Env Sci Tec 24: 281–323. doi: 10.1080/10643389409388470 |
[71] | Bosch A (1995) The survival of enteric viruses in the water environment. Microbiologia 11: 393–396. |
[72] | Hernandez F, Monge R, Jimenez C, et al. (1997) Rotavirus and hepatitis A virus in market lettuce (Lactuca sativa) in Costa Rica. Int J Food Microbiol 37: 221–223. doi: 10.1016/S0168-1605(97)00058-5 |
[73] | Yates MV, Gerba CP, Kelley LM (1985) Virus persistence in groundwater. Appl Environ Microb 49: 778–781. |
[74] | Nuorti JP, Niskanen T, Hallanvuo S, et al. (2004) A widespread outbreak of Yersinia pseudotuberculosis O:3 infections from iceberg lettuce. J Infect Dis 189: 766–774. doi: 10.1086/381766 |
[75] | Fukushima H, Gomyoda M (1991) Intestinal carriage of Yersinia pseudotuberculosis by wild birds and mammals in Japan. Appl Environ Microb 57: 1152–1155. |
[76] | CDPH/FDA, E. coli O157:H7 outbreak associated with iceberg lettuce at Taco John's December 2006. California Department of Public Health and Food and Drug Administration final report, 2008. Available from: http://www.cdph.ca.gov/pubsforms/Documents/fdb%20eru%20IceLet%20TacoJohn022008.pdf. |
[77] | CDC (2007) Multistate outbreaks of Salmonella infections associated with raw tomatoes eaten in restaurants-United States, 2005–2006. MMWR 56: 901–911. |
[78] | Bowen A, Fry A, Richards G, et al. (2006) Infections associated with cantaloupe consumption: A public health concern. Epidemiol Infect 134: 675–685. doi: 10.1017/S0950268805005480 |
[79] | Taormina PJ, Beuchat LR, Slutsker L (1999) Infections associated with eating seed sprouts: An international concern. Emerg Infect Dis 5: 626–634. doi: 10.3201/eid0505.990503 |
[80] | NACMCF (1999) Microbiological safety evaluations and recommendations on sprouted seeds. National Advisory Committee on Microbiological Criteria for Foods. Int J Food Microbiol 52: 123–153. |
[81] | Rasko DA, Webster DR, Sahl JW, et al. (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. New Engl J Med 365: 709–717. |
[82] | Blaser MJ (2011) Deconstructing a lethal foodborne epidemic. New Engl J Med 365: 1835–1836. doi: 10.1056/NEJMe1110896 |
[83] | Frank C, Werber D, Cramer JP, et al. (2011) Epidemic profile of shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. New Engl J Med 365: 1771–1780. doi: 10.1056/NEJMoa1106483 |
[84] | Kupferschmidt K (2011) As E. coli outbreak recedes, new questions come to the fore. Science 33: 27. |
[85] | Delaquis P, Bach S, Dinu LD (2007) Behavior of Escherichia coli O157:H7 in leafy vegetables. J Food Protect 70: 1966–1974. doi: 10.4315/0362-028X-70.8.1966 |
[86] | Patel JR, Millner PD, Nou XW, et al. (2010) Persistence of Enterohemorrhagic and non-pathogenic Escherichia coli O157:H7 on spinach leaves and in rhizosphere soil. J Appl Microbiol 108: 1789–1796. doi: 10.1111/j.1365-2672.2009.04583.x |
[87] | Heaton JC, Jones K (2008) Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: A review. J Appl Microbiol 104: 613–626. doi: 10.1111/j.1365-2672.2007.03587.x |
[88] | Teplitski M, Barak JD, Schneider KR (2009) Human enteric pathogens in produce: Unanswered ecological questions with direct implications for food safety. Curr Opin Biotech 20: 166–171. doi: 10.1016/j.copbio.2009.03.002 |
[89] | Lapidot A, Yaron S (2009) Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Protect 72: 618–623. doi: 10.4315/0362-028X-72.3.618 |
[90] | Patel JR, Sharma M, Ravishankar S (2011) Effect of curli expression and hydrophobicity of Escherichia coli O157:H7 on attachment to fresh produce surfaces. J Appl Microbiol 110: 737–745. doi: 10.1111/j.1365-2672.2010.04933.x |
[91] | Berger CN, Sodha SV, Shaw RK, et al. (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12: 2385–2397. doi: 10.1111/j.1462-2920.2010.02297.x |
[92] | García AV, Hirt H (2014) Salmonella enterica induces and subverts the plant immune system. Front Microbiol 5: 141. |
[93] | Iniguez AL, Dong YM, Carter HD, et al. (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe In 18: 169–178. doi: 10.1094/MPMI-18-0169 |
[94] | Melotto M, Underwood W, Koczan J, et al. (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980. doi: 10.1016/j.cell.2006.06.054 |
[95] | García AV, Charrier A, Schikora A, et al. (2014) Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana. Mol Plant 7: 657–674. doi: 10.1093/mp/sst145 |
[96] | Meng F, Altier C, Martin GB (2013) Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ Microbiol 15: 2418–2430. doi: 10.1111/1462-2920.12113 |
[97] | Seo S, Matthews KR (2012) Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl Environ Microb 78: 5882–5889. doi: 10.1128/AEM.01095-12 |
[98] | Islam M, Doyle MP, Phatak SC, et al. (2004) Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. J Food Protect 67: 1365–1370. doi: 10.4315/0362-028X-67.7.1365 |
[99] | Jang H, Matthews KR (2018) Survival and interaction of Escherichia coli O104:H4 on Arabidopsis thaliana and lettuce (Lactuca sativa) in comparison to E. coli O157:H7: Influence of plant defense response and bacterial capsular polysaccharide. Food Res Int 108: 35–41. |
[100] | Markland SM, Shortlidge KL, Hoover DG, et al. (2012) Survival of pathogenic Escherichia coli on basil, lettuce, and spinach. Zoonoses Public Hlth 60: 563–571. |
[101] | FDA, Guide to minimize microbial food safety hazards for fresh fruits and vegetables, 1998. Available from: http://www.fda.gov/downloads/Food/ GuidanceRegulation/UCM169112.pdf. |
[102] | FDA, Guidance for industry: guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables. College Park, MD: US Department of Health and Human Services, Food and Drug Administration, 2007. Available from: http://www.cfsan.fda.gov/~dms/prodgui3.html. |
[103] | FDA, Draft Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Leafy Greens, 2009. Available from: http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/ProduceandPlanProducts/ucm174200.htm. |
[104] | FDA (2009) Prevention of Salmonella Enteritidis in shell eggs during production, storage, and transportation. Final rule. Federal Register 74: 33029–33101. |
[105] | FDA, Draft guidance for industry: guide to minimize microbial food safety hazards of melons, 2009. Available from: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocuments RegulatoryInformation/ProducePlantProducts/ucm174171.htm. |
[106] | FDA, Draft guidance for industry: guide to minimize microbial food safety hazards of tomatoes, 2009. Available from: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocuments RegulatoryInformation/ProducePlantProducts/ucm173902.htm. |
[107] | FDA, Guidance for industry: guide to minimize microbial food safety hazards of leafy greens, 2009. Available from: http://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryinformation/produceplantproducts/ucm174200.htm. |
[108] | FSAI (2001) Code of practice for food safety in the fresh produce supply chain in Ireland, Food Safety Authority of Ireland, Dublin. |
[109] | Pachepsky Y, Shelton DR, McLain JET, et al. (2011) Chapter two-irrigation waters as a source of pathogenic microorganisms in produce: A review. Adv Agron 113: 75–141. doi: 10.1016/B978-0-12-386473-4.00002-6 |
[110] | Petterson SR, Ashbolt N, Sharma A (2001) Microbial risks from wastewater irrigation of salad crops: A screening-level risk assessment. Water Environ Res 72: 667–672. |
[111] | Cooley M, Carychao D, Crawford-Miksza L, et al. (2007) Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS One 2: 115910. |
[112] | Gil MI, Selma MV, Suslow T, et al. (2015) Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit Rev Food Sci 55: 453–468. doi: 10.1080/10408398.2012.657808 |
[113] | Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44: 367–392. doi: 10.1146/annurev.phyto.44.070505.143359 |