Citation: Yu Wang, Caroline A. Brown, Rachel Chen. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF)[J]. AIMS Microbiology, 2018, 4(2): 261-273. doi: 10.3934/microbiol.2018.2.261
[1] | Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chem 12: 539–517. doi: 10.1039/b922014c |
[2] | Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass, National Renewable Energy Laboratory: Golden, CO. |
[3] | Zhang D, Dumont MJ (2017) Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J Polym Sci Pol Chem 55: 1478–1492. doi: 10.1002/pola.28527 |
[4] | Deng J, Pan T, Xu Q, et al. (2013) Linked strategy for the production of fuels via formose reaction. Sci Rep 3: 1244. doi: 10.1038/srep01244 |
[5] | Rosatella AA, Simeonov SP, Frade RFM, et al. (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13: 754–741. doi: 10.1039/c0gc00401d |
[6] | Cui MS, Deng J, Li XL, et al. (2016) Production of 4-Hydroxymethylfurfural from derivatives of biomass-derived glycerol for chemicals and polymers. ACS Sustain Chem Eng 4: 1707–1714. doi: 10.1021/acssuschemeng.5b01657 |
[7] | van Putten RJ, van der Waal JC, de Jong ED, et al. (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113: 1499–1597. doi: 10.1021/cr300182k |
[8] | Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technol 238: 716–732. doi: 10.1016/j.biortech.2017.04.026 |
[9] | Qin YZ, Zong MH, Lou WY, et al. (2016) Biocatalytic upgrading of 5-Hydroxymethylfurfural (HMF) with levulinic acid to HMF levulinate in biomass-derived solvents. ACS Sustain Chem Eng 4: 4050–4054. doi: 10.1021/acssuschemeng.6b00996 |
[10] | Bohre A, Dutta S, Saha B, et al. (2015) Upgrading furfurals to drop-in biofuels: An overview. ACS Sustain Chem Eng 3: 1263–1277. doi: 10.1021/acssuschemeng.5b00271 |
[11] | Caes BR, Teixeira RE, Knapp KG, et al. (2015) Biomass to furanics: Renewable routes to chemicals and fuels. ACS Sustain Chem Eng 3: 2591–2605. doi: 10.1021/acssuschemeng.5b00473 |
[12] | Alexandrino K, Millera Á, Bilbao R, et al. (2014) Interaction between 2,5-dimethylfuran and nitric oxide: Experimental and modeling study. Energ Fuel 28: 4193–4198. doi: 10.1021/ef5005573 |
[13] | Zhong S, Daniel R, Xu H, et al. (2010) Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energ Fuel 24: 2891–2899. doi: 10.1021/ef901575a |
[14] | Ray P, Smith C, Simon G, et al. (2017) Renewable green platform chemicals for polymers. Molecules 12: 376. |
[15] | Burgess SK, Leisen JE, Kraftschik BE, et al. (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47: 1383–1391. doi: 10.1021/ma5000199 |
[16] | Papageorgiou GZ, Tsanaktsis V, Bikiaris DN (2014) Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys 16: 7946–7958. doi: 10.1039/C4CP00518J |
[17] | Codou A, Moncel M, van Berkel JG, et al. (2016) Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Phys Chem Chem Phys 18: 16647–16658. doi: 10.1039/C6CP01227B |
[18] | Dimitriadis T, Bikiaris DN, Papageorgiou GZ, et al. (2016) Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry. Macromol Chem Phys 217: 2056–2062. doi: 10.1002/macp.201600278 |
[19] | Lomelí-Rodríguez M, Martín-Molina M, Jiménez-Pardo M, et al. (2016) Synthesis and kinetic modeling of biomass-derived renewable polyesters. J Polym Sci Pol Chem 54: 2876–2887. doi: 10.1002/pola.28173 |
[20] | Terzopoulou Z, Tsanaktsis V, Nerantzaki M, et al. (2016) Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. J Anal Appl Pyrol 117: 162–175. doi: 10.1016/j.jaap.2015.11.016 |
[21] | Baba Y, Hirukawa N, Tanohira N, et al. (2003) Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (Calcineurin). J Am Chem Soc 125: 9740–9749. doi: 10.1021/ja034694y |
[22] | Clark DE, Clark KL, Coleman RA, et al. (2005) Patent No. WO2004067524. |
[23] | Ermakov S, Beletskii A, Eismont O, et al. (2015) Brief review of liquid crystals, In: Liquid Crystals in Biotribology, Springer, 37–56. |
[24] | Dewar MJS, Riddle RM (1975) Factors influencing the stabilities of nematic liquid crystals. J Am Chem Soc 97: 6658–6662. doi: 10.1021/ja00856a010 |
[25] | Kowalski S, Lukasiewicz M, Duda-Chodak A, et al. (2013) 5-hydroxymethyl-2-furfural (HMF)-heat-induced formation, occurrence in food and biotransformation-a review. Pol J Food Nutr Sci 63: 207–225. |
[26] | Murkovic M, Bornik MA (2007) Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol Nutr Food Res 51: 390–394. doi: 10.1002/mnfr.200600251 |
[27] | Murkovic M, Pichler N (2006) Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol Nutr Food Res 50: 842–846. doi: 10.1002/mnfr.200500262 |
[28] | Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16: 24–38. doi: 10.1039/C3GC41324A |
[29] | Rout PK, Nannaware AD, Prakash O, et al. (2016) Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising biochemical and biofuel feedstock. Chem Eng Sci 142: 318–346. doi: 10.1016/j.ces.2015.12.002 |
[30] | Mukherjee A, Dumont MJ, Raghavan V (2015) Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenerg 72: 143–183. doi: 10.1016/j.biombioe.2014.11.007 |
[31] | Thiyagarajan S, Pukin A, van Haveren J, et al. (2013) Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Adv 3: 15678–15686. doi: 10.1039/C3RA42457J |
[32] | Corre C, Song L, O'Rourke S, et al. (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA 105: 17510–17515. doi: 10.1073/pnas.0805530105 |
[33] | Sidda JD, Corre C (2012) Gamma-butyrolactone and furan signaling systems in Streptomyces. Method Enzymol 517: 71–87. doi: 10.1016/B978-0-12-404634-4.00004-8 |
[34] | Wang Y, Jones MK, Xu H, et al. (2015) Mechanism of the enzymatic synthesis of 4-(Hydroxymethyl)-2-furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate catalyzed by 4-HFC-P synthase. Biochemistry 54: 2997–3008. doi: 10.1021/acs.biochem.5b00176 |
[35] | Miller D, Wang Y, Xu H, et al. (2014) Biosynthesis of the 5-(Aminomethyl)-3-furanmethanol moiety of methanofuran. Biochemistry 53: 4635–4647. doi: 10.1021/bi500615p |
[36] | Wang Y, Xu H, Jones MK, et al. (2015) Identification of the final two genes functioning in methanofuran biosynthesis in Methanocaldococcus jannaschii. J Bacteriol 197: 2850–2858. doi: 10.1128/JB.00401-15 |
[37] | Jia J, Schorken U, Lindqvist Y, et al. (1997) Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases. Protein Sci 6: 119–124. |
[38] | Hester G, Brenner-Holzach O, Rossi FA, et al. (1991) The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution. FEBS Lett 292: 237–242. doi: 10.1016/0014-5793(91)80875-4 |
[39] | Sygusch J, Beaudry D, Allaire M (1987) Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc Natl Acad Sci USA 84: 7846–7850. doi: 10.1073/pnas.84.22.7846 |
[40] | Blom N, Sygusch J (1997) Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol 4: 36–39. doi: 10.1038/nsb0197-36 |
[41] | Izard T, Lawrence MC, Malby RL, et al. (1994) The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli. Structure 2: 361–369. doi: 10.1016/S0969-2126(00)00038-1 |
[42] | Kim CG, Yu TW, Fryhle CB, et al. (1998) 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics. J Biol Chem 273: 6030–6040. doi: 10.1074/jbc.273.11.6030 |
[43] | Kim H, Certa U, Dobeli H, et al. (1998) Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry 37: 4388–4396. doi: 10.1021/bi972233h |
[44] | Bobik TA, Morales EJ, Shin A, et al. (2014) Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii. Acta Crystallogr F 70: 1472–1479. doi: 10.1107/S2053230X1402130X |
[45] | Heine A, DeSantis G, Luz JG, et al. (2001) Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294: 369–374. doi: 10.1126/science.1063601 |
[46] | Almeida JRM, Röder A, Modig T, et al. (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biot 78: 939–945. doi: 10.1007/s00253-008-1364-y |
[47] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25–33. |
[48] | Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363: 769–776. doi: 10.1042/bj3630769 |
[49] | Barciszewski J, Siboska GE, Pedersen BO, et al. (1997) A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett 414: 457–460. doi: 10.1016/S0014-5793(97)01037-5 |
[50] | Horváth IS, Taherzadeh MJ, Niklasson C, et al. (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75: 540–549. doi: 10.1002/bit.10090 |
[51] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74: 17–24. |
[52] | Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12: 307–331. doi: 10.1016/j.ymben.2010.03.004 |
[53] | Wang X, Miller EN, Yomano LP, et al. (2011) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microb 77: 5132–5140. doi: 10.1128/AEM.05008-11 |
[54] | Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors andin situ detoxification, In: Biomass to Biofuels: Strategies for Global Industries, Blackwell Publishing Ltd., 233–259. |
[55] | Liu ZL, Moon J, Andersh BJ, et al. (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biot 81: 743–753. doi: 10.1007/s00253-008-1702-0 |
[56] | Nieves LM, Panyon LA, Wang X (2015) Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol 3: 1–10. |
[57] | Wierckx N, Koopman F, Ruijssenaars HJ, et al. (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biot 92: 1095–1105. doi: 10.1007/s00253-011-3632-5 |
[58] | Zhang J, Zhu Z, Wang X, et al. (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3: 26. doi: 10.1186/1754-6834-3-26 |
[59] | Trifonova R, Postma J, Ketelaars JJMH, et al. (2008) Thermally treated grass fibers as colonizable substrate for beneficial bacterial inoculum. Microbial Ecol 56: 561–571. doi: 10.1007/s00248-008-9376-9 |
[60] | López MJ, Nichols NN, Dien BS, et al. (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biot 64: 125–131. doi: 10.1007/s00253-003-1401-9 |
[61] | Boopathy R, Daniels L (1991) Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester. Curr Microbiol 23: 327–332. doi: 10.1007/BF02104134 |
[62] | Brune G, Schoberth SM, Sahm H (1983) Growth of a strictly anaerobic bacterium on furfural (2-furaldehyde). Appl Environ Microb 46: 1187–1192. |
[63] | Koopman F, Wierckx N, de Winde JH, et al. (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107: 4919–4924. doi: 10.1073/pnas.0913039107 |
[64] | Dijkman WP, Groothuis DE, Fraaije MW (2014) Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Edit 53: 6515–6518. doi: 10.1002/anie.201402904 |
[65] | Dijkman WP, Fraaije MW (2014) Discovery and characterization of a 5-Hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl Environ Microb 80: 1082–1090. doi: 10.1128/AEM.03740-13 |
[66] | Dijkman WP, Binda C, Fraaije MW, et al. (2015) Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catal 5: 1833–1839. doi: 10.1021/acscatal.5b00031 |
[67] | de Jong E, Dam MA, Sipos L, et al. (2012) Furandicarboxylic acid (fdca), a versatile building block for a very interesting class of polyesters, In: Biobased Monomers, Polymers, and Materials, American Chemical Society, 1–13. |