Citation: Lorenzo Azzalini, Philippe L. L’Allier, Jean-François Tanguay. Bioresorbable Scaffolds: The Revolution in Coronary Stenting?[J]. AIMS Medical Science, 2016, 3(1): 126-146. doi: 10.3934/medsci.2016.1.126
[1] | Grüntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis— percutaneous transluminal coronary angioplasty. New Engl J Med 301:61–68. doi: 10.1056/NEJM197907123010201 |
[2] | De Feyter PJ, de Jaegere PP, Serruys PW (1994) Incidence, predictors, and management of acute coronary occlusion after coronary angioplasty. Am Heart J 127: 643–651. doi: 10.1016/0002-8703(94)90675-0 |
[3] | Serruys PW, Luijten HE, Beatt KJ, et al. (1988) Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77: 361–371. |
[4] | Gruentzig AR, King SB 3rd, Schlumpf M, et al. (1987) Long-term follow-up after percutaneous transluminal coronary angioplasty. The early Zurich experience. New Engl J Med 316: 1127–1132. doi: 10.1056/NEJM198704303161805 |
[5] |
Farooq V, Gogas BD, Serruys PW (2001) Restenosis: delineating the numerous causes of drug-eluting stent restenosis. Circ Cardiovasc Interv 4: 195–205. doi: 10.1080/14628840127766 |
[6] | Macander PJ, Agrawal SK, Roubin GS (1991) The Gianturco-Roubin balloon-expandable intracoronary flexible coil stent. J Invasive Cardiol 3: 85–94. |
[7] | Schatz RA, Palmaz JC, Tio FO, et al. (1987) Balloon-expandable intracoronary stents in the adult dog. Circulation 76: 450–457. doi: 10.1161/01.CIR.76.2.450 |
[8] | Sigwart U, Gold S, Kaufman U, et al. (1988) Analysis of complications associated with coronary stenting (abstract). J Am Coll Cardiol 11: 66A. doi: 10.1016/0735-1097(88)90168-4 |
[9] | Sigwart U, Puel J, Mirkovitch V, et al. (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. New Engl J Med 316: 701–706. doi: 10.1056/NEJM198703193161201 |
[10] | Lansky AJ, Roubin GS, O’Shaughnessy CD, et al. (2000) Randomized comparison of GR-II stent and Palmaz-Schatz stent for elective treatment of coronary stenoses. Circulation 102: 1364–1368. doi: 10.1161/01.CIR.102.12.1364 |
[11] | Baim DS, Cutlip DE, Midei M, et al. (2001) Final results of a randomized trial comparing the MULTI-LINK stent with the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 87: 157–162. doi: 10.1016/S0002-9149(00)01308-4 |
[12] | Baim DS, Cutlip DE, O’Shaughnessy CD, et al. (2001) Final results of a randomized trial comparing the NIR stent to the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 87: 152–156. |
[13] | Colombo A, Hall P, Nakamura S, et al. (1995) Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91: 1676–1688. doi: 10.1161/01.CIR.91.6.1676 |
[14] | Duckers HJ, Nabel EG, Serruys PW, editors. (2007) Essentials of restenosis: for the interventional cardiologist. Totowa, NJ: Humana Press. |
[15] | Tada T, Byrne RA, Simunovic I, et al. (2013) Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients. JACC Cardiovasc Interv 6: 1267–1274. doi: 10.1016/j.jcin.2013.06.015 |
[16] |
Daemen J, Wenaweser P, Tsuchida K, et al. (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369: 667–678. doi: 10.1016/S0140-6736(07)60314-6 |
[17] | Wenaweser P, Daemen J, Zwahlen M, et al. (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52: 1134–1140. |
[18] | Sarno G, Lagerqvist B, Fröbert O, et al. (2012) Lower risk of stent thrombosis and restenosis with unrestricted use of “new-generation” drug-eluting stents: A report from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR). Eur Heart J 33: 606–613. |
[19] | Togni M, Windecker S, Cocchia R, et al. (2005) Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. J Am Coll Cardiol 46: 231–236. doi: 10.1016/j.jacc.2005.01.062 |
[20] | Hofma SH, Van Der Giessen WJ, Van Dalen BM, et al. (2006) Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart J 27: 166–170. |
[21] | Onuma Y, Serruys PW (2011) Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123: 779–797. doi: 10.1161/CIRCULATIONAHA.110.971606 |
[22] | Wayangankar SA, Ellis SG (2015) Bioresorbable stents: is this where we are headed? Prog Cardiovasc Dis 26. |
[23] | Van der Giessen WJ, Slager CJ, van Beusekom HM, et al. (1992) Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J Invasive Cardiol 5: 175–185. |
[24] | Van der Giessen WJ, Lincoff AM, Schwartz RS, et al. (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94: 1690–1697. doi: 10.1161/01.CIR.94.7.1690 |
[25] | Lincoff AM, Furst JG, Ellis SG, et al. (1997) Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol 29: 808–816. doi: 10.1016/S0735-1097(96)00584-0 |
[26] | Yamawaki T, Shimokawa H, Kozai T, et al. (1998) Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J Am Coll Cardiol 32: 780–786. |
[27] | Iqbal J, Onuma Y, Ormiston J, et al. (2013) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35: 765–776. |
[28] | Tamai H, Igaki K, Kyo E, et al. (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102: 399–404. doi: 10.1161/01.CIR.102.4.399 |
[29] | Serruys PW, Ormiston JA, Onuma Y, et al. (2009) A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373: 897–910. |
[30] | Verheye S, Ormiston JA, Stewart J, et al. (2014) A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv 7: 89–99. doi: 10.1016/j.jcin.2013.07.007 |
[31] | Abizaid A (2014) DESolve NX Trial clinical and imaging results. Presented at: Transcatheter Cardiovascular Therapeutics (TCT). Washington, DC; September 13-17. |
[32] | Costa RA (2012) REVA ReZolve clinical program update. Presented at: Transcatheter Cardiovascular Therapeutics (TCT). Miami Beach, FL; October 22-28. |
[33] | Muller D (2014) ReZolve 2: Bioresorbable coronary scaffold clinical program update. Presented at: EuroPCR. Paris, France; May 20-23. |
[34] | Erbel R, Di Mario C, Bartunek J, et al. (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369: 1869–1875. |
[35] | Haude M, Erbel R, Erne P, et al. (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. The Lancet 381: 836–844. |
[36] | Waksman R (2014) Long-term clinical data of the BIOSOLVE-I study with the paclitaxel-eluting absorbable magnesium scaffold (DREAMS 1st generation) and multi- modality imaging analysis. |
[37] | Onuma Y, Dudek D, Thuesen L, et al. (2013) Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv 6: 999–1009. doi: 10.1016/j.jcin.2013.05.017 |
[38] | Serruys PW, Onuma Y, Garcia-Garcia HM, et al. (2014) Dynamics of vessel wall changes following the implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention 9: 1271–1284. doi: 10.4244/EIJV9I11A217 |
[39] | Serruys PW, Chevalier B, Dudek D, et al. (2015) A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from. Lancet 385: 43–54. |
[40] | Ellis SG, Kereiakes DJ, Metzger DC, et al. (2015) Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 373: 1905–1915. doi: 10.1056/NEJMoa1509038 |
[41] |
Sabaté M, Windecker S, Iñiguez A, et al. (2015) Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J 23. |
[42] | Gao R, Yang Y, Han Y, et al. (2015) Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol 25. |
[43] |
Capodanno D, Gori T, Nef H, et al. (2015) Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 10: 1144–1153. doi: 10.4244/EIJY14M07_11 |
[44] | Palmerini T, Biondi-Zoccai G, Della Riva D, et al. (2012) Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet 379: 1393–1402. doi: 10.1016/S0140-6736(12)60324-9 |
[45] | Abizaid A, Costa JR, Bartorelli AL, et al. (2015) The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention 10: 1396–1401. |
[46] | Džavík V, Colombo A (2014) The Absorb bioresorbable vascular scaffold in coronary bifurcations: insights from bench testing. JACC Cardiovasc Interv 7: 81–88. doi: 10.1016/j.jcin.2013.07.013 |
[47] | Rundeken MJ, Hassell MECJ, Kraak RP, et al. (2014) Treatment of coronary bifurcation lesions with the Absorb bioresorbable vascular scaffold in combination with the Tryton dedicated coronary bifurcation stent: evaluation using two- and three-dimensional optical coherence tomography. EuroIntervention 30. |
[48] | Capranzano P, Gargiulo G, Capodanno D, et al. (2014) Treatment of coronary bifurcation lesions with bioresorbable vascular scaffolds. Minerva Cardioangiol 62: 229–234. |
[49] | Kawamoto H, Latib A, Ruparelia N, et al. (2015) Clinical outcomes following bioresorbable scaffold implantation for bifurcation lesions: overall outcomes and comparison between provisional and planned double stenting strategy. Catheter Cardiovasc Interv 86: 644–652. doi: 10.1002/ccd.26045 |
[50] | Cortese B, Silva Orrego P, Sebik R, et al. (2014) Biovascular scaffolding of distal left main trunk: experience and follow up from the multicenter prospective RAI registry (Registro Italiano Absorb). Int J Cardiol 177: 497–499. |
[51] | Panoulas VF, Miyazaki T, Sato K, et al. (2015) Procedural outcomes of patients with calcified lesions treated with bioresorbable vascular scaffolds. EuroIntervention 30. |
[52] | Vaquerizo B, Barros A, Pujadas S, et al. (2014) Bioresorbable everolimus-eluting vascular scaffold for the treatment of chronic total occlusions: CTO-ABSORB pilot study. EuroIntervention 16. |
[53] | Diletti R, Karanasos A, Muramatsu T, et al. (2014) Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur Heart J 35: 777–786. doi: 10.1093/eurheartj/eht546 |
[54] | Kocka V, Maly M, Tousek P, et al. (2014) Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study “Prague 19.” Eur Heart J 35: 787–794. |
[55] | Ielasi A, Cortese B, Varricchio A, et al. (2015) Immediate and midterm outcomes following primary PCI with bioresorbable vascular scaffold implantation in patients with ST-segment myocardial infarction: insights from the multicentre “Registro ABSORB Italiano” (RAI registry). EuroIntervention 11: 157–162. doi: 10.4244/EIJY14M10_11 |
[56] | Brugaletta S, Gori T, Low AF, et al. (2015) Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: the BVS-EXAMINATION Study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction). JACC Cardiovasc Interv 8: 189–197. |
[57] | Ong PJ, Jafary FH, Ho HH (2013) “First-in-man” use of bioresorbable vascular scaffold in saphenous vein graft. EuroIntervention 9: 165. |
[58] | Deora S, Shah S, Patel T (2014) First-in-man implantation of bioresorbable vascular scaffold in left internal mammary artery graft. J Invasive Cardiol 26: 92–93. |
[59] | Moscarella E, Varricchio A, Stabile E, et al. (2015) Bioresorbable vascular scaffold implantation for the treatment of coronary in-stent restenosis: results from a multicenter Italian experience. Int J Cardiol 199: 366–372. doi: 10.1016/j.ijcard.2015.07.002 |
[60] | Tamburino C, Latib A, van Geuns R-J, et al. (2015) Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention 11: 45–52. doi: 10.4244/EIJY15M01_05 |
[61] | Azzalini L, L’Allier PL (2015) Bioresorbable vascular scaffold thrombosis in an all-comer patient population: single center experience. J Invasive Cardiol 27: 85–92. |
[62] | Azzalini L, Al-Hawwas M, L’Allier PL (2015) Very late bioresorbable vascular scaffold thrombosis: a new clinical entity. Eurointervention 11: e1–2. |
[63] | Karanasos A, van Geuns R-J, Zijlstra F, et al. (2014) Very late bioresorbable scaffold thrombosis after discontinuation of dual antiplatelet therapy. Eur Heart J 35: 1781. doi: 10.1093/eurheartj/ehu031 |
[64] | Karanasos A, Van Mieghem N, van Ditzhuijzen N, et al. (2015) Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ Cardiovasc Interv 8: e002369. doi: 10.1161/CIRCINTERVENTIONS.114.002369 |
[65] | Nakatani S, Onuma Y, Ishibashi Y, et al. (2015) Early (before 6 months), late (6-12 months) and very late (after 12 months) angiographic scaffold restenosis in the ABSORB Cohort B trial. EuroIntervention 10: 1288–1298. doi: 10.4244/EIJV10I11A218 |
[66] | Longo G, Granata F, Capodanno D, et al. (2015) Anatomical features and management of bioresorbable vascular scaffolds failure: A case series from the GHOST registry. Catheter Cardiovasc Interv 85: 1150–1161. doi: 10.1002/ccd.25819 |
[67] | Felix C, Everaert B, Jepson N, et al. (2015) Treatment of bioresorbable scaffold failure. EuroIntervention 11: V175–180. doi: 10.4244/EIJV11SVA42 |
[68] | Cassese S, Byrne RA, Ndrepepa G, et al. (2015) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. The Lancet 6736: 1–8. |