Citation: Ilige Hage, Ramsey Hamade. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries[J]. AIMS Medical Science, 2015, 2(4): 328-346. doi: 10.3934/medsci.2015.4.328
[1] | Salguero L, Saadat F, Sevostianov I (2014) Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue. J Biomechanics 47: 3279-3287. |
[2] | Aishwarya R, Nagaraju V (2012) Automatic region of interest based medical image segmentation using spatial fuzzy k clustering method. Int J Electronics Commu 3: 226-229. |
[3] | Deselaers T, Keysers D, Ney H (2004) Features for image retrieval: A quantitative comparison. Pattern Recogn: 228-236. |
[4] | Couprie C, Najman L, Talbot H (2011) Seeded segmentation methods for medical image analysis. Med Image Process: 27-57. |
[5] | Beham MP, Gurulakshmi A (2012) Morphological image processing approach on the detection of tumor and cancer cells. Devices Circuits Systems (ICDCS), 2012 International Conference on: 350-354. |
[6] | Quelhas P, Marcuzzo M, Mendonça AM, et al. (2009) Cancer cell detection and invasion depth estimation in brightfield images. BMVC: 1-10. |
[7] | Tassani S, Korfiatis V, Matsopoulos GK. Segmentation of micro-CT images: An understudied problem. |
[8] | Wu Y, Bergot C, Jolivet E, et al. (2009) Cortical bone mineralization differences between hip-fractured females and controls. A microradiographic study. Bone 45: 207-212. |
[9] | Ligesh CAS, Shanker N, Vijay A, et al. (2011) Estimation of bone mineral density from the digital image of the calcanium bone. Electro Comput Techno (ICECT), 2011 3rd International Conference on 3: 365-369. |
[10] | Ma X, Overton T (1991) Automated image analysis for bone density measurements using computed tomography. Med Imaging 10: 611-615. |
[11] | Wolf P, Luechinger R, Stacoff A, et al. (2007) Reliability of tarsal bone segmentation and its contribution to MR kinematic analysis methods. Comput Med Imaging Graphics 31:523-530. |
[12] | Zhang Y, He Z, Fan S, et al. (2008) Automatic thresholding of micro-CT trabecular bone images. BioMed Engine Inform 2: 23-27. |
[13] | Liu Z, Austin TJ, Moore D, et al. (1995) Image processing techniques for bone image analysis. Image Processing 1: 458-461. |
[14] | Liu Z, Liew HL, Dance S (1996) Image processing techniques for quantitative bone image analysis. Sign Process Applica 1: 431-432. |
[15] | Jatti A (2010) Segmentation of microscopic bone images. Int J Electron Engine 2. |
[16] | Jatti A (2011) Segmentation and Analysis of Microscopic Osteosarcoma Bone Images. Int J Inform Techno Knowledge Manage 4: 195-200. |
[17] | Liu Z, Liew HL, Clement JG, et al. (1999) Bone image segmentation. Biomed Engine 46: 565-573. |
[18] | Liu Z, Austin TJ, Thomas CDL, et al. (1996) Bone feature analysis using image processing techniques. Comput Biol Med 26: 65-76. doi: 10.1016/0010-4825(95)00044-5 |
[19] | Cooper D, Erickson B, Peele AG, et al. (2011) Visualization of 3D osteon morphology by synchrotron radiation micro‐CT. J Anatomy 219: 481-489. |
[20] | Dong P, Pacureanu A, Zuluaga MA, et al. (2014) Quantification of the 3D morphology of the bone cell network from synchrotron micro-CT images. Image Analy Stereol 33: 157-166. doi: 10.5566/ias.v33.p157-166 |
[21] | Hage IS, Hamade RF (2012) Structural micro processing of Haversian systems of a cortical bovine femur using optical stereomicroscope and MATLAB. ASME 2012 Int Mechan Engine Congress Exposit: 595-601. |
[22] | Hage IS, Hamade RF (2013) Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization. Comput Med Imaging Graphics 37: 466-474. |
[23] | Hage IS, Hamade RF (2015) Geometric-attributes-based segmentation of cortical bone slides using optimized neural networks. J Bone Mine Metabol. In press. |
[24] | Hage IS, Hamade RF (2013) Micro-FEM orthogonal cutting model for bone using microscope images enhanced via artificial intelligence. Procedia CIRP 8: 384-389. |
[25] | Hage IS, Hamade RF (2013) Micro FEM simulations of single-cutting-edge sawing of cortical bone. ASME 2013 Int Mechan Engine Congress Exposit: V03AT03A049-V03AT03A049. |
[26] | Lindblad T, Kinser JM (2005) Image processing using pulse-coupled neural networks, Springer. |
[27] | Wang Z, Ma Y, Gu J (2010) Multi-focus image fusion using PCNN. Pattern Recog 43: 2003-2016. doi: 10.1016/j.patcog.2010.01.011 |
[28] | Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intelligence 1: 33-57. |
[29] | Gao K, Dong M, Jia F, et al. (2012) OTSU image segmentation algorithm with immune computation optimized PCNN parameters. Engine Technol (S-CET), 2012 Spring Congress: 1-4. |
[30] | Pai Y, Chang Y, Ruan SJ (2010) Adaptive thresholding algorithm: Efficient computation technique based on intelligent block detection for degraded document images. Pattern Recog 43: 3177-3187. |
[31] | Gonzalez RC, Woods RE (2002) Digital image processing using MATLAB. Pearson Education India. |
[32] | Ma Y, Zhan K, Wang Z (2010) Applications of pulse-coupled neural networks. Higher Education Press. |
[33] | Deng Y, Manjunath BS, Shin H, et al. (1999) Color Image Segmentation. IEEE CVPR 2: 2446. |
[34] | Appleford MR, Pilia M (2014). U.S. Patent No. 20,140,236,312. Washington, DC: U.S. Patent and Trademark Office. |
[35] | Dawant BM, Hartmann SL, Thirion JP, et al. (1999) Medical Imaging, Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects. IEEE 18: 909-916. |
[36] | Conte D, Foggia P, Tufano F, et al. (2011) An Enhanced Level Set Algorithm for Wrist Bone Segmentation. Image Segment, InTech: 293-308. |
[37] | Calder J, Tahmasebi AM, Mansouri AR (2011) A variational approach to bone segmentation in CT images. SPIE Med Imaging: 79620B-79620B-15. |
[38] | Mahendran S, Baboo S (2011) Enhanced automatic X-ray bone image segmentation using wavelets and morphological operators. Int Conf on Information and Electronics Eng: 125-129. |
[39] | Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Image 15: 29. doi: 10.1186/s12880-015-0068-x |
[40] | Bégin S, Dupont-Therrien O, Bélanger E, et al. (2014) Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue. Biomed Optics Express 5: 4145-4161. doi: 10.1364/BOE.5.004145 |