Citation: Gilberto González-Parra, Hana M. Dobrovolny. Editorial: Mathematical foundations in biological modelling and simulation[J]. Mathematical Biosciences and Engineering, 2024, 21(9): 7084-7086. doi: 10.3934/mbe.2024311
[1] | M. C. Gómez, F. A. Rubio, E. I. Mondragón, Qualitative analysis of generalized multistage epidemic model with immigration, Math. Biosci. Eng., 20 (2023), 15765–15780. https://doi.org/10.3934/mbe.2023702 doi: 10.3934/mbe.2023702 |
[2] | Z. Noffel, H. M. Dobrovolny, Quantifying the effect of defective viral genomes in respiratory syncytial virus infections, Math. Biosci. Eng., 20 (2023), 12666–12681. https://doi.org/10.3934/mbe.2023564 doi: 10.3934/mbe.2023564 |
[3] | G. Luebben, G. González-Parra, B. Cervantes, Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA, Math. Biosci. Eng., 20 (2023), 10828–10865. https://doi.org/10.3934/mbe.2023481 doi: 10.3934/mbe.2023481 |
[4] | S. M. Simelane, P. G. Dlamini, F. J. Osaye, G. Obaido, B. Ogbukiri, K. Aruleba, et al., Modeling the impact of public health education on tungiasis dynamics with saturated treatment: Insight through the Caputo fractional derivative, Math. Biosci. Eng., 20 (2023), 7696–7720. https://doi.org/10.3934/mbe.2023332 doi: 10.3934/mbe.2023332 |
[5] | A. H. Albargi, M. El Hajji, Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process, Math. Biosci. Eng., 20 (2023), 6591–6611. https://doi.org/10.3934/mbe.2023283 doi: 10.3934/mbe.2023283 |
[6] | C. Kadelka. Projecting social contact matrices to populations stratified by binary attributes with known homophily, Math. Biosci. Eng., 20 (2023), 3282–3300. https://doi.org/10.3934/mbe.2023154 doi: 10.3934/mbe.2023154 |
[7] | S. Sultana, G. González-Parra, A. J. Arenas, Dynamics of toxoplasmosis in the cat's population with an exposed stage and a time delay, Math. Biosci. Eng., 19 (2022), 12655–12676. https://doi.org/10.3934/mbe.2022591 doi: 10.3934/mbe.2022591 |