This paper was concerned with the trajectory tracking control of wheeled mobile robots using aperiodic intermittent control. By establishing the corresponding motion model of the wheeled mobile robot, a tracking control strategy was proposed based on the intermittent control approach and backstepping method. Compared to the controllers using continuous state feedback, the proposed control strategy was activated only on separate time intervals, which combined the features of closed- and open-loop control. An example was given to illustrate the effectiveness of the obtained result.
Citation: Xinyi He, Xiuping Han, Tengda Wei, Xiaodi Li. Tracking control of wheeled mobile robots via intermittent control[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 3774-3783. doi: 10.3934/mbe.2024167
This paper was concerned with the trajectory tracking control of wheeled mobile robots using aperiodic intermittent control. By establishing the corresponding motion model of the wheeled mobile robot, a tracking control strategy was proposed based on the intermittent control approach and backstepping method. Compared to the controllers using continuous state feedback, the proposed control strategy was activated only on separate time intervals, which combined the features of closed- and open-loop control. An example was given to illustrate the effectiveness of the obtained result.
[1] | Z. Yang, J. Li, L. Yang, Q. Wang, P. Li, G. Xia, Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments, Math. Biosci. Eng., 20 (2023), 145–178. https://doi.org/10.3934/mbe.2023008 doi: 10.3934/mbe.2023008 |
[2] | D. Yu, C. P. Chen, H. Xu, Fuzzy swarm control based on sliding-mode strategy with self-organized omnidirectional mobile robots system, IEEE Trans. Syst. Man Cyber. Syst., 52 (2021), 2262–2274. https://doi.org/10.1109/TSMC.2020.3048733 doi: 10.1109/TSMC.2020.3048733 |
[3] | P. Zhang, T. Liu, Z. P. Jiang, Tracking control of unicycle mobile robots with event-triggered and self-triggered feedback, IEEE Trans. Autom. Control, 68 (2022), 2261–2276. https://doi.org/10.1109/TAC.2022.3173932 doi: 10.1109/TAC.2022.3173932 |
[4] | C. Samson, K. Ait-Abderrahim, Feedback control of a nonholonomic wheeled cart in cartesian space, in Proceedings 1991 IEEE International Conference on Robotics and Automation, (1991), 1136–1137. https://doi.org/10.1109/ROBOT.1991.131748 |
[5] | C. Jiang, K. Chau, C. Liu, C. H. Lee, W. Han, W. Liu, Move-and-charge system for automatic guided vehicles, IEEE Trans. Magn., 54 (2018), 1–5. https://doi.org/10.1109/TMAG.2018.2829727 doi: 10.1109/TMAG.2018.2829727 |
[6] | S. Berman, Y. Edan, M. Jamshidi, Navigation of decentralized autonomous automatic guided vehicles in material handling, IEEE Trans. Rob. Autom., 19 (2003), 743–749. https://doi.org/10.1109/TRA.2003.814513 doi: 10.1109/TRA.2003.814513 |
[7] | C. Yuan, B. Xiong, X. Li, X. Sang, Q. Kong, A novel intelligent inspection robot with deep stereo vision for three-dimensional concrete damage detection and quantification, Struct. Health Monit., 21 (2022), 788–802. https://doi.org/10.1177/14759217211010238 doi: 10.1177/14759217211010238 |
[8] | X. Qin, G. Wu, J. Lei, F. Fan, X. Ye, Q. Mei, A novel method of autonomous inspection for transmission line based on cable inspection robot lidar data, Sensors, 18 (2018), 596. https://doi.org/10.3390/s18020596 doi: 10.3390/s18020596 |
[9] | C. Zhang, T. Liu, S. Song, J. Wang, M. Q. H. Meng, Dynamic wheeled motion control of wheel-biped transformable robots, Biomimetic Intell. Rob., 2 (2022), 100027. https://doi.org/10.1016/j.birob.2021.100027 doi: 10.1016/j.birob.2021.100027 |
[10] | D. Wu, X. T. Ha, Y. Zhang, M. Ourak, G. Borghesan, K. Niu, et al., Deep-learning-based compliant motion control of a pneumatically-driven robotic catheter, IEEE Rob. Autom. Lett., 7 (2022), 8853–8860. https://doi.org/10.1109/LRA.2022.3186497 doi: 10.1109/LRA.2022.3186497 |
[11] | W. Sun, S. F. Su, J. Xia, Y. Wu, Adaptive tracking control of wheeled inverted pendulums with periodic disturbances, IEEE Trans. Cyber., 50 (2018), 1867–1876. https:/doi.org/10.1109/TCYB.2018.2884707 doi: 10.1109/TCYB.2018.2884707 |
[12] | K. C. Cao, Y. P. Tian, A time-varying cascaded design for trajectory tracking control of nonholonomic systems, Int. J. Control, 80 (2007), 416–429. https://doi.org/10.1109/CHICC.2006.280917 doi: 10.1109/CHICC.2006.280917 |
[13] | Z. P. Jiang, H. Nijmeijer, Tracking control of mobile robots: A case study in backstepping, Automatica, 33 (1997), 1393–1399. https://doi.org/10.1016/S0005–1098(97)00055–1 doi: 10.1016/S0005–1098(97)00055–1 |
[14] | Z. P. Jiang, H. Nijmeijer, A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Trans. Autom. Control, 44 (1999), 265–279. https://doi.org/10.1109/9.746253 doi: 10.1109/9.746253 |
[15] | Z. H. Guan, D. J. Hill, X. Shen, On hybrid impulsive and switching systems and application to nonlinear control, IEEE Trans. Autom. Control, 50 (2005), 1058–1062. https://doi.org/10.1109/TAC.2005.851462 doi: 10.1109/TAC.2005.851462 |
[16] | S. Yu, J. Lu, X. Yu, G. Chen, Design and implementation of grid multiwing hyperchaotic lorenz system family via switching control and constructing super-heteroclinic loops, IEEE Trans. Circuits Syst. I, 59 (2012), 1015–1028. https://doi.org/10.1109/TCSI.2011.2180429 doi: 10.1109/TCSI.2011.2180429 |
[17] | J. Cheng, L. Liang, J. H. Park, H. Yan, K. Li, A dynamic event-triggered approach to state estimation for switched memristive neural networks with nonhomogeneous sojourn probabilities, IEEE Trans. Circuits Syst. I, 68 (2021), 4924–4934. https://doi.org/10.1109/TCSI.2021.3117694 doi: 10.1109/TCSI.2021.3117694 |
[18] | R. Goebel, R. G. Sanfelice, A. R. Teel, Hybrid dynamical systems, IEEE Control Syst. Mag., 29 (2009), 28–93. https://doi.org/10.1109/MCS.2008.931718 doi: 10.1109/MCS.2008.931718 |
[19] | W. M. Haddad, V. Chellaboina, S. G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton University Press, 2006. https://doi.org/10.1515/9781400865246 |
[20] | T. Stamov, G. Stamov, I. Stamova, E. Gospodinova, Lyapunov approach to manifolds stability for impulsive cohen-grossberg-type conformable neural network models, Math. Biosci. Eng., 20 (2023), 15431–15455. https://doi.org/10.3934/mbe.2023689 doi: 10.3934/mbe.2023689 |
[21] | X. Liu, T. Chen, Synchronization of complex networks via aperiodically intermittent pinning control, IEEE Trans. Autom. Control, 60 (2015), 3316–3321. https://doi.org/10.1109/TAC.2015.2416912 doi: 10.1109/TAC.2015.2416912 |
[22] | Y. Liu, J. Liu, W. Li, Stabilization of highly nonlinear stochastic coupled systems via periodically intermittent control, IEEE Trans. Autom. Control, 66 (2020), 4799–4806. https://doi.org/10.1109/TAC.2020.3036035 doi: 10.1109/TAC.2020.3036035 |
[23] | Y. Zhao, J. Yao, J. Tian, J. Yu, Adaptive fixed-time stabilization for a class of nonlinear uncertain systems, Math. Biosci. Eng., 20 (2023), 8241–8260. https://doi.org/10.3934/mbe.2023359 doi: 10.3934/mbe.2023359 |
[24] | X. G. Guo, P. M. Liu, Z. G. Wu, D. Zhang, C. K. Ahn, Hybrid event-triggered group consensus control for heterogeneous multi-agent systems with TVNUD faults and stochastic FDI attacks, IEEE Trans. Autom. Control, 2023 (2023), 8013–8020. https://doi.org/10.1109/TAC.2023.3254368 doi: 10.1109/TAC.2023.3254368 |
[25] | Z. Ye, D. Zhang, G. Feng, H. Yan, Finite-time consensus of leader-following mass under DoS attacks, IEEE Control Syst. Lett., 7 (2023), 3409–3414. https://doi.org/10.1109/LCSYS.2023.3332811 doi: 10.1109/LCSYS.2023.3332811 |