Research article

A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies

  • Received: 13 September 2022 Revised: 19 October 2022 Accepted: 27 October 2022 Published: 03 November 2022
  • In this work, a fishery predator-prey model with anti-predator behavior is presented according to the anti-predator phenomenon in nature. On the basis of this model, a capture model guided by a discontinuous weighted fishing strategy is established. For the continuous model, it analyzes how anti-predator behavior affects system dynamics. On this basis, it discusses the complex dynamics (order-$ m $ periodic solution ($ m = 1, 2 $)) induced by a weighted fishing strategy. Besides, in order to find the capture strategy that maximizes the economic profit in the fishing process, this paper constructs an optimization problem based on the periodic solution of the system. Finally, all of the results of this study have been verified numerically in MATLAB simulation.

    Citation: Yuan Tian, Yan Gao, Kaibiao Sun. A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 1558-1579. doi: 10.3934/mbe.2023071

    Related Papers:

  • In this work, a fishery predator-prey model with anti-predator behavior is presented according to the anti-predator phenomenon in nature. On the basis of this model, a capture model guided by a discontinuous weighted fishing strategy is established. For the continuous model, it analyzes how anti-predator behavior affects system dynamics. On this basis, it discusses the complex dynamics (order-$ m $ periodic solution ($ m = 1, 2 $)) induced by a weighted fishing strategy. Besides, in order to find the capture strategy that maximizes the economic profit in the fishing process, this paper constructs an optimization problem based on the periodic solution of the system. Finally, all of the results of this study have been verified numerically in MATLAB simulation.



    加载中


    [1] Y. Choh, M. Ignacio, M. W. Sabelis, A. Janssen, Predator-prey role reversals, juvenile experience and adult antipredator behaviour, Sci. Rep., 2 (2012), 728. https://doi.org/10.1038/srep00728 doi: 10.1038/srep00728
    [2] Z. Hoover, M. Ferrari, D. P. Chivers, The effects of sub-lethal salinity concentrations on the anti-predator responses of fathead minnows, Chemosphere, 90 (2013), 1047–1052. https://doi.org/10.1016/j.chemosphere.2012.08.051 doi: 10.1016/j.chemosphere.2012.08.051
    [3] C. M. O'Connor, A. R. Reddon, A. Odetunde, Social cichlid fish change behaviour in response to a visual predator stimulus, but not the odour of damaged conspecifics, Behav Processes, 121 (2015), 21–29. https://doi.org/10.1016/j.beproc.2015.10.002 doi: 10.1016/j.beproc.2015.10.002
    [4] A. Landeira-Dabarca, J. Nslund, J. I. Johnsson, Cue recognition and behavioural responses in the three-spined stickleback (Gasterosteus aculeatus) under risk of fish predation, Acta Ethol., 22 (2019), 209—221. https://doi.org/10.1007/s10211-019-00324-8 doi: 10.1007/s10211-019-00324-8
    [5] P. Kłosiński, J. Kobak, M. Augustyniak, P. Pawlak, L. Jermacz, M. Poznańska-Kakareko, et al, Behavioural responses to con-and heterospecific alarm cues by an alien and a coexisting native fish, Hydrobiologia, 849 (2022), 985–1000. https://doi.org/10.1007/s10750-021-04761-0 doi: 10.1007/s10750-021-04761-0
    [6] T. Yokota, M. Machida, H. Takeuchi, S. Masuma, R. Masuda, N. Arai, Anti-predatory performance in hatchery-reared red tilefish (Branchiostegus japonicus) and behavioral characteristics of two predators: Acoustic telemetry, video observation and predation trials, Aquaculture, 319 (2011), 290–297. https://doi.org/10.1016/j.aquaculture.2011.07.010 doi: 10.1016/j.aquaculture.2011.07.010
    [7] B. Tang, Y. N. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behaviour, Chaos Soliton Fract, 70 (2015), 58–68. https://doi.org/10.1016/j.chaos.2014.11.008 doi: 10.1016/j.chaos.2014.11.008
    [8] X. D. Sun, Y. P. Li, Y. N. Xiao, A Predator-Prey Model with Prey Population Guided Anti-Predator Behavior, Int. J Bifurcat. Chaos, 27 (2017), 1750099. https://doi.org/10.1142/S0218127417500997 doi: 10.1142/S0218127417500997
    [9] S. G. Mortoja, P. Panja, S. K. Mondal, Dynamics of a predator-prey model with stage-structure on both species and anti-predator behavior, Inform. Med. Unlocked, 10 (2018), 50–57. https://doi.org/10.1016/j.imu.2017.12.004 doi: 10.1016/j.imu.2017.12.004
    [10] K.D. Prasad, B. Prasad, Qualitative analysis of additional food provided predator-prey system with anti-predator behaviour in prey, Nonlinear Dyn., 96 (2019), 1765–1793. https://doi.org/10.1007/s11071-019-04883-0 doi: 10.1007/s11071-019-04883-0
    [11] S. Sirisubtawee, N. Khansai, A. Charoenloedmongkhon, Investigation on dynamics of an impulsive predator-prey system with generalized Holling type IV functional response and anti-predator behavior, Adv. Differ. Equ., 2021 (2021), 160. https://doi.org/10.1186/s13662-021-03324-w doi: 10.1186/s13662-021-03324-w
    [12] Y. Tian, Y. Gao, Qualitative Analysis and Feedback Control of Predator-Prey Model with Anti-predation Effect, J. Xinyang Normal Univer. (Nat. Sci. Edit.), 35 (2022), 523–527. https://doi.org/10.3969/j.issn.1003-0972.2022.04.002 doi: 10.3969/j.issn.1003-0972.2022.04.002
    [13] Y. F. Lv, R. Yuan, Y. Z. Pei, A prey-predator model with harvesting for fishery resource with reserve area, Appl. Math. Model., 37 (2013), 3048–3062. https://doi.org/10.1016/j.apm.2012.07.030 doi: 10.1016/j.apm.2012.07.030
    [14] D. P. Hu, H. J. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal.-Real., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
    [15] T. K. Ang, H. M. Safuan, Dynamical behaviors and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting, Biosystems, 202 (2021), 104357. https://doi.org/10.1016/j.biosystems.2021.104357 doi: 10.1016/j.biosystems.2021.104357
    [16] M. Costa, E. Kaszkurewicz, A. Bhaya, L. Hsu, Achieving global convergence to an equilibrium population in predator–prey systems by the use of a discontinuous harvesting policy, Ecol. Model., 128 (2000), 89–99. https://doi.org/10.1016/S0304-3800(99)00220-3 doi: 10.1016/S0304-3800(99)00220-3
    [17] X.Y Song, Y.F. Li, Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect, Chaos Soliton Fract, 33 (2007), 463–478. https://doi.org/10.1016/j.chaos.2006.01.019 doi: 10.1016/j.chaos.2006.01.019
    [18] Y. Zhang, S.J. Gao, S.H. Chen, Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response, Math. Biosci. Eng., 18 (2021), 1485–1512. https://doi.org/10.3934/mbe.2021077 doi: 10.3934/mbe.2021077
    [19] L. F. Nie, Z. D. Teng, H. Lin, J. G. Peng, The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator, Biosystems, 98 (2009), 67–72. https://doi.org/10.1016/j.biosystems.2009.06.001 doi: 10.1016/j.biosystems.2009.06.001
    [20] H.J. Guo, L.S. Chen, X.Y. Song, Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property, Appl. Math. Comput., 271 (2015), 905–922. https://doi.org/10.1016/j.amc.2015.09.046 doi: 10.1016/j.amc.2015.09.046
    [21] Y. Tian, Y. Gao, K. B. Sun, Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy, Chaos Soliton. Fract., 164 (2022), 112597. https://doi.org/10.1016/j.chaos.2022.112597 doi: 10.1016/j.chaos.2022.112597
    [22] P. S. Simenov, D. D. Bainov, Orbital stability of the periodic solutions of autonomous systems with impulse effect, Int. J. Syst. Sci., 19 (1988), 2561–2585. https://doi.org/10.1080/00207728808547133 doi: 10.1080/00207728808547133
    [23] Y. Tian, K. B. Sun, L. S. Chen, Geometric approach to the stability analysis of the periodic solution in a semi-continuous dynamic system, Int. J. Biomath., 7 (2014), 1450018. https://doi.org/10.1142/S1793524514500181 doi: 10.1142/S1793524514500181
    [24] L.S. Chen, X. Y. Liang, Y. Z. Pei, The periodic solutions of the impulsive state feedback dynalical system, Commun. Math. Biol. Neurosci., 2018 (2018), 14. https://doi.org/10.28919/cmbn/3754 doi: 10.28919/cmbn/3754
    [25] S. Y. Tang, W. H. Pang, R. A. Cheke, J. H. Wu, Global dynamics of a state-dependent feedback control system, Adv. Differ. Equ., 2015 (2015), 322. https://doi.org/10.1186/s13662-015-0661-x doi: 10.1186/s13662-015-0661-x
    [26] S.Y. Tang, L.S., Modelling and analysis of integrated pest management strategy, Discrete Cont. Dyn. B, 4 (2004), 759–768. https://doi.org/10.3934/dcdsb.2004.4.759 doi: 10.3934/dcdsb.2004.4.759
    [27] S.Y. Tang, Y.N. SY, L.S. Chen, R.A. Cheke, Integrated pest management models and their dynamical behaviour, B. Math. Biol., 67 (2005), 115–135. https://doi.org/10.1016/j.bulm.2004.06.005 doi: 10.1016/j.bulm.2004.06.005
    [28] S.Y. Tang, R.A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257–292. https://doi.org/10.1007/S00285-004-0290-6 doi: 10.1007/S00285-004-0290-6
    [29] K.B. Sun, T.H. Zhang, Y. Tian, Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate, Math. Biosci., 279 (2016), 13–26. https://doi.org/10.1016/j.mbs.2016.06.006 doi: 10.1016/j.mbs.2016.06.006
    [30] K.B. Sun, T.H. Zhang, Y. Tian, Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy, Appl. Math. Comput., 292 (2017), 253-271. https://doi.org/10.1016/j.amc.2016.07.046 doi: 10.1016/j.amc.2016.07.046
    [31] Q.Q. Zhang, B. Tang, S.Y. Tang, Vaccination threshold size and backward bifurcation of SIR model with state-dependent pulse control, J. Theor. Biol., 455 (2018), 75–85. https://doi.org/10.1016/j.jtbi.2018.07.010 doi: 10.1016/j.jtbi.2018.07.010
    [32] Q. Zhang, B. Tang, T. Cheng, S. Tang, Bifurcation analysis of a generalized impulsive Kolmogorov model with applications to pest and disease control, SIAM J. Appl. Math., 80 (2020), 1796–1819. https://doi.org/10.1137/19M1279320 doi: 10.1137/19M1279320
    [33] G. Pang, X. Sun, Z. Liang, S. He, X. Zeng, Impulsive state feedback control during the sulphitation reaction in process of manufacture of sugar, Int. J. Biomath., 13 (2020), 2050076. https://doi.org/10.1142/S179352452050076X doi: 10.1142/S179352452050076X
    [34] S. Y. Tang, B. Tang, A. L. Wang, Y. N. Xiao, Holling II predator-prey impulsive semi-dynamic model with complex Poincaré map, Nonlinear Dyn. 81 (2015), 1575-1596. https://doi.org/10.1007/s11071-015-2092-3
    [35] T. Q. Zhang, W. B. Ma, X. Z. Meng, T. H. Zhang, Periodic solution of a prey-predator model with nonlinear state feedback control, Appl. Math. Comput., 266 (2015), 95-107. https://doi.org/10.1016/j.amc.2015.05.016 doi: 10.1016/j.amc.2015.05.016
    [36] Q. Z. Xiao, B. X. Dai, Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy, Math. Biosci. Eng., 12 (2015), 1065–1081. https://doi.org/10.3934/mbe.2015.12.1065 doi: 10.3934/mbe.2015.12.1065
    [37] J. Yang, Y. S. Tan, Effects of pesticide dose on Holling II predator-prey model with feedback control, J. Biol. Dynam., 12 (2018), 527–550. https://doi.org/10.1080/17513758.2018.1479457 doi: 10.1080/17513758.2018.1479457
    [38] Z.Z. Shi, H. D. Cheng, Y. Liu, Y. H. Wang, Optimization of an integrated feedback control for a pest management predator-prey model, Math. Biosci. Eng. 16 (2019), 7963–7981. https://doi.org/10.3934/mbe.2019401
    [39] J. Xu, M.Z. Huang, X.Y. Song, Dynamical analysis of a two-species competitive system with state feedback impulsive control, Int. J. Biomath., 13 (2020), 2050007. https://doi.org/10.1142/S1793524520500072 doi: 10.1142/S1793524520500072
    [40] S. Tang, C. Li C; B. Tang, X. Wang, Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-hump discrete map, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 104900. https://doi.org/10.1016/j.cnsns.2019.104900 doi: 10.1016/j.cnsns.2019.104900
    [41] M. Zhang, Y. Zhao, X.Y. Song, Dynamics of bilateral control system with state feedback for price adjustment strategy, Int. J. Biomath. 14 (2021), 2150031. https://doi.org/10.1142/S1793524521500315
    [42] J. Yang, S.Y. Tang, Holling type II predator–prey model with nonlinear pulse as state-dependent feedback control, J. Comput. Appl. Math., 291 (2016), 225–241. https://doi.org/10.1016/j.cam.2015.01.017 doi: 10.1016/j.cam.2015.01.017
    [43] Y. Tian, S. Y. Tang, R. A. Cheke, Nonlinear state-dependent feedback control of a pest-natural enemy system, Nonlinear Dyn. 94 (2018), 2243–2263. https://doi.org/10.1007/s11071-018-4487-4
    [44] Y. Tian, S. Y. Tang, Dynamics of a density-dependent predator-prey biological system with nonlinear impulsive control, Math. Biosci. Eng., 18 (2021), 7318–7343. https://doi.org/10.3934/mbe.2021362 doi: 10.3934/mbe.2021362
    [45] Y. Tian, H. M. Li, The Study of a Predator-Prey Model with Fear Effect Based on State-Dependent Harvesting Strategy, Complexity, 2022 (2022), 9496599. https://doi.org/10.1155/2022/9496599 doi: 10.1155/2022/9496599
    [46] W. Li, J. Ji, L. Huang, Global dynamic behavior of a predator-prey model under ratio-dependent state impulsive control, Appl. Math. Model., 77 (2020), 1842–1859. https://doi.org/10.1016/j.apm.2019.09.033 doi: 10.1016/j.apm.2019.09.033
    [47] W. Li, L. Huang, Z. Guo, J. Ji, Global dynamic behavior of a plant disease model with ratio dependent impulsive control strategy, Math. Comput. Simulat., 177 (2020), 120–139. https://doi.org/10.1016/j.matcom.2020.03.009 doi: 10.1016/j.matcom.2020.03.009
    [48] Q.Q. Zhang, S.Y. Tang, Bifurcation analysis of an ecological model with nonlinear state-dependent feedback control by Poincaré map defined in phase set, Commun. Nonlinear Sci. Numer. Simul., 108 (2022), 106212. https://doi.org/10.1016/j.cnsns.2021.106212 doi: 10.1016/j.cnsns.2021.106212
    [49] Y.Z. Wu, G.Y. Tang, C.C. Xiang, Dynamic analysis of a predator-prey state-dependent impulsive model with fear effect in which action threshold depending on the prey density and its changing rate, Math. Biosci. Eng., 19 (2022), 13152–13171. https://doi.org/10.3934/mbe.2022615 doi: 10.3934/mbe.2022615
    [50] T. Y. Li, J. A. Yorke, Period three implies chaos, Amer. Math., 82 (1975), 985–992. Available from: https://link.springer.com/chapter/10.1007/978-0-387-21830-4_6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1839) PDF downloads(211) Cited by(15)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog