Review Special Issues

Quantitative predictive approaches for Dupuytren disease: a brief review and future perspectives


  • Received: 18 November 2021 Revised: 23 December 2021 Accepted: 03 January 2022 Published: 14 January 2022
  • In this study we review the current state of the art for Dupuytren's disease (DD), while emphasising the need for a better integration of clinical, experimental and quantitative predictive approaches to understand the evolution of the disease and improve current treatments. We start with a brief review of the biology of this disease and current treatment approaches. Then, since certain aspects in the pathogenesis of this disorder have been compared to various biological aspects of wound healing and malignant processes, next we review some in silico (mathematical modelling and simulations) predictive approaches for complex multi-scale biological interactions occurring in wound healing and cancer. We also review the very few in silico approaches for DD, and emphasise the applicability of these approaches to address more biological questions related to this disease. We conclude by proposing new mathematical modelling and computational approaches for DD, which could be used in the absence of animal models to make qualitative and quantitative predictions about the evolution of this disease that could be further tested in vitro.

    Citation: Georgiana Eftimie, Raluca Eftimie. Quantitative predictive approaches for Dupuytren disease: a brief review and future perspectives[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2876-2895. doi: 10.3934/mbe.2022132

    Related Papers:

  • In this study we review the current state of the art for Dupuytren's disease (DD), while emphasising the need for a better integration of clinical, experimental and quantitative predictive approaches to understand the evolution of the disease and improve current treatments. We start with a brief review of the biology of this disease and current treatment approaches. Then, since certain aspects in the pathogenesis of this disorder have been compared to various biological aspects of wound healing and malignant processes, next we review some in silico (mathematical modelling and simulations) predictive approaches for complex multi-scale biological interactions occurring in wound healing and cancer. We also review the very few in silico approaches for DD, and emphasise the applicability of these approaches to address more biological questions related to this disease. We conclude by proposing new mathematical modelling and computational approaches for DD, which could be used in the absence of animal models to make qualitative and quantitative predictions about the evolution of this disease that could be further tested in vitro.



    加载中


    [1] C. Ball, D. Izadi, L. Verjee, J. Chan, J. Nanchahal, Systematic review of non-surgical treatments for early Dupuytren's disease, BMC Musculoskeletal Disord., 17 (2016), 345. https://doi.org/10.1186/s12891-016-1200-y doi: 10.1186/s12891-016-1200-y
    [2] R. Grazina, S. Teixeira, R. Ramos, H. Sousa, A. Ferreira, R. Lemos, Dupuytren's disease: where do we stand?, EFORT Open Rev., 4 (2019), 63–69. https://doi.org/10.1302/2058-5241.4.180021 doi: 10.1302/2058-5241.4.180021
    [3] G. Rayan, Dupuytren disease: anatomy, pathology, presentation, and treatment, J. Bone Joint Surg., 89 (2007), 190–198. https://doi.org/10.2106/00004623-200701000-00026 doi: 10.2106/00004623-200701000-00026
    [4] C. Eaton, Dupuytren disease and related diseases - The cutting edge, Springer International Publishing Switzerland, 2017. https: //doi.org/10.1007/978-3-319-32199-8
    [5] R.B. Shaw. Jr., A.K.S. Chong, A. Zhang, V. R. Hentz, J. Chang, Dupuytren's disease: history, diagnosis, and treatment, Plast. Reconstr. Surg., 120 (2007), 44e. https://doi.org/10.1016/s0363-5023(10)80134-0 doi: 10.1016/s0363-5023(10)80134-0
    [6] R. McFarlane, Dupuytren's disease: Relation to work and injury, J. Hand Surg. Am., 16 (1991), 775–779. https://doi.org/10.1016/s0363-5023(10)80134-0 doi: 10.1016/s0363-5023(10)80134-0
    [7] E. Critchley, S. Vakil, H. Hayward, V. Owen, Dupuytren's disease in epilepsy: result of prolonged administration of anticonvulsants, J. Neurol. Neurosurg. Psychiatry, 39 (1976), 498–503. https://doi.org/10.1136/jnnp.39.5.498 doi: 10.1136/jnnp.39.5.498
    [8] P. Burge, G. Hoy, P. Regan, R. Milne, Smoking, alcohol and the risk of Dupuytren's contracture, J. Bone Joint Surg. Br., 79 (1997), 206–210. https://doi.org/10.1302/0301-620x.79b2.6990 doi: 10.1302/0301-620x.79b2.6990
    [9] K. Denkler, Surgical complications associated with fascietomy for Dupuytren's disease: A 20-year review of the English literature, Eplasty, 10 (2010), e15.
    [10] H. Khan, F. Verrijp, S. Hovius, C. van Nieuwenhoven, D. D. Group, R. Selles, Recurrence of Dupuytren's contracture: a consensus-based definition, PLoS One, 12 (2017), e0164849. https://doi.org/10.1371/journal.pone.0164849 doi: 10.1371/journal.pone.0164849
    [11] R. Meek, S. McLellan, J. Crossan, Dupuytren's disease: A model for the mechanisms of fibrosis and its modulation by steroids, J. Bone Joint Surg. Br., 81 (1999), 732–738. https://doi.org/10.1302/0301-620x.81b4.9163 doi: 10.1302/0301-620x.81b4.9163
    [12] L. Verjee, J. Verhoekx, J. Chan, T. Krausgruber, V. Nicolaidou, D. Izadi, et al., Unraveling the signaling pathways promoting fibrosis in Dupuytren's disease reveals TNF as a therapeutic target, Proc. Natl. Acad. Sci. USA, 110 (2013), E928–E937. https://doi.org/10.1073/pnas.1301100110 doi: 10.1073/pnas.1301100110
    [13] S. Iqbal, M. Hayton, J. Watson, P. Szczypa, A. Bayat, First identification of resident and circulating fibrocytes in Dupuytren's disease shown to be inhibited by Serum Amyloid P and Xiapex, PLoS One, 9 (2014), e99967. https://doi.org/10.1371/journal.pone.0099967 doi: 10.1371/journal.pone.0099967
    [14] J. Neumüller, J. Menzel, H. Millesi, Prevalence of HLA-DR3 and autoantibodies to connective tissue components in Dupuytren's contracture, Clin. Immunol. Immunopathol., 71 (1994), 142–148. https://doi.org/10.1006/clin.1994.1064 doi: 10.1006/clin.1994.1064
    [15] R. Pereira, C. Black, S. Turner, J. Spencer, Antibodies to collagen types I-VI in Dupuytren's contracture, J. Hand Surg. Br., 11 (1986), 58–60. https://doi.org/10.1016/0266-7681(86)90014-8 doi: 10.1016/0266-7681(86)90014-8
    [16] J. Wilkinson, R. Davidson, T. Swingler, E. Jones, A. Corps and P. Johnston, et al., MMP-14 and MMP-2 are key metalloproteases in Dupuytren's disease fibroblast-mediated contraction, Biochim. Biophys. Acta, 1822 (2012), 897–905. https://doi.org/10.1016/j.bbadis.2012.02.001 doi: 10.1016/j.bbadis.2012.02.001
    [17] B. Costas, S. Coleman, G. Kaufman, R. James, B. Cohen, R. Gaston, Efficacy and safety of collagenase clostridium histolyticum for Dupuytren disease nodules: a randomized controlled trial, BMC Musculoskeletal Disord., 18 (2017), 374. https://doi.org/10.1186/s12891-017-1713-z doi: 10.1186/s12891-017-1713-z
    [18] G. Caravalhana, I. Auquit-Auckbur, P. Y. Miliez, Maladie de Dupuytren : état des connaissances et de la recherche en physiopathologie, Chirurgie de la Main, 30 (2011), 239–245. https://doi.org/10.1016/j.main.2011.03.002 doi: 10.1016/j.main.2011.03.002
    [19] K. Gudmunsson, R. Amgrimsson, N. Sigfússon, T. Jónsson, Increased total mortality and cancer mortality in men with Dupuytren's disease: a 15-year follow-up study, J. Clin. Epidem., 55 (2002), 5–10. https://doi.org/10.1016/s0895-4356(01)00413-9 doi: 10.1016/s0895-4356(01)00413-9
    [20] S. Karkampouna, P. Kloen, M. Obdejin, S. Riester, A. van Wijnen, M. K. de Julio, Human Dupuytren's ex vivo culture for the study of myofibroblasts and extracellular matrix interactions, J. Vis. Exp., 98 (2015), 52534. https://doi.org/10.3791/52534 doi: 10.3791/52534
    [21] S. Ud-Din, A. Bayat, Non-animal models of wound healing in cutaneous repair: in silico, in vitro, ex vivo, and in vivo models of wounds and scars in human skin, Wound Repair Regen., 25 (2017), 164–176. https://doi.org/10.1111/wrr.12513 doi: 10.1111/wrr.12513
    [22] C. Jean-Quartier, F. Jeanquartier, I. Jurisica, A. Holzinger, In silico cancer research towards 3R, BMC Cancer, 18 (2018), 408. https://doi.org/10.1186/s12885-018-4302-0 doi: 10.1186/s12885-018-4302-0
    [23] N. Menke, J. Cain, A. Reynolds, D. Chan, R. Segal, T. W. Witten, et al., An in silico approach to the analysis of acute wound healing, Wound Repair Regen., 18 (2010), 105–113. https://doi.org/10.1111/j.1524-475X.2009.00549.x doi: 10.1111/j.1524-475X.2009.00549.x
    [24] C. A. Alfonso-Rodríguez, I. Garzón, J. Garrido-Gómez, A. C. X. Oliveira, M. A. Martín-Piedra, G. Scionti, et al., Identification of histological patterns in clinically affected and unaffected palm regions in Dupuytren's disease, PLoS One, 9 (2014), e112457. https://doi.org/10.1371/journal.pone.0112457 doi: 10.1371/journal.pone.0112457
    [25] S. Rehman, Y. Xu, W. Dunn, P. Day, H. Westerhoff, R. Goodacre, et al., Dupuytren's disease metabolite analyses reveals alterations following initial short-term fibroblast culturing, Mol. BioSyst., 8 (2012), 2274–2288. https://doi.org/10.1039/c2mb25173f doi: 10.1039/c2mb25173f
    [26] J. Luck, Dupuytren's contracture: a new concept of the pathogenesis correlated with surgical management, J. Bone Joint Surg., 41 (1959), 635–664.
    [27] T. Layton, J. Hanchahal, Recent advanced in the understanding of Dupuytren's disease, F1000Res, 8 (2019), 231. https://doi.org/10.12688/f1000research.17779.1 doi: 10.12688/f1000research.17779.1
    [28] K. Moyer, D. Banducci, W. Graham, H. Ehrlich, Dupuytren's disease: physiologic changes in nodule and cord fibroblasts through aging in vitro, Plast. Reconstr. Surg., 110 (2002), 187–196. https://doi.org/10.1097/00006534-200207000-00031 doi: 10.1097/00006534-200207000-00031
    [29] L. Vi, L. Feng, R. Zhu, Y. Wu, L. Satish, B. Gan, et al., Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren's disease and adjacent palmar fascia cells, Exp. Cell Res., 315 (2009), 3574–3586. https://doi.org/10.1016/j.yexcr.2009.07.015 doi: 10.1016/j.yexcr.2009.07.015
    [30] M. van Beuge, E. J. ten Dam, P. Werker, R. Bank, Matrix and cell phenotype differences in Dupuytren's disease, Fibrogenesis Tissue Repair, 9 (2016), 9. https://doi.org/10.1186/s13069-016-0046-0 doi: 10.1186/s13069-016-0046-0
    [31] E. Bianchi, S. Taurone, L. Bardella, A. Signore, E. Pompili and V. Sessa, et al., Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of the Dupuytren's contracture: a novel target for a possible future therapeutic strategy?, Clin. Sci., 129 (2015), 711–720. https://doi.org/10.1042/CS20150088 doi: 10.1042/CS20150088
    [32] J. Verhoekx, K. Beckett, M. Bisson, D. McGrouther, A. Grobbelaar, V. Mudera, The mechanical environment in Dupuytren's contracture determines cell contractility and associated MMP-mediated matrix remodeling, J. Orthop. Res., 31 (2013), 328–334. https://doi.org/10.1002/jor.22220 doi: 10.1002/jor.22220
    [33] J. Andrew, S. Andrew, A. Ash, B. Turner, An investigation into the role of inflammatory cells in Dupuytren's disease, J. Hand Surg. Br., 16 (1991), 267–271. https://doi.org/10.1016/0266-7681(91)90051-o doi: 10.1016/0266-7681(91)90051-o
    [34] C. Mayerl, B. D. Frari, W. Parson, G. Boeck, H. Piza-Katzer, G. Wick, et al., Characterisation of the inflammatory response in Dupuytren's disease, J. Plast. Surg. Hand Surg., 50 (2016), 171–179. https://doi.org/10.3109/2000656X.2016.1140054 doi: 10.3109/2000656X.2016.1140054
    [35] M. Tripoli, A. Cordova, F. Moschella, Updates on the role of molecular factors and fibroblasts in the pathogenesis of Dupuytren's disease, J. Cell Commun Signal., 10 (2016), 315–330. https://doi.org/10.1007/s12079-016-0331-0 doi: 10.1007/s12079-016-0331-0
    [36] T. Wynn, T. Ramalingam, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat. Med., 18 (2012), 1028–1040. https://doi.org/https://doi.org/10.1038/nm.2807
    [37] L. Verjee, K. Midwood, D. Davidson, D. Essex, A. Sandison, J. Nanchahal, Myofibroblast distribution in Dupuytren's cords: correlation with digital contracture, J. Hand Surg. Am., 34 (2009), 1785–1794. https://doi.org/10.1016/j.jhsa.2009.08.005 doi: 10.1016/j.jhsa.2009.08.005
    [38] B. Behm, P. Babilas, M. Landthaler, S. Schreml, Cytokines, chemokines and growth factors in wound healing, J. Eur. Acad. Dermatol Venerol, 26 (2012), 812–820. https://doi.org/10.1111/j.1468-3083.2011.04415.x doi: 10.1111/j.1468-3083.2011.04415.x
    [39] G. Landskron, M. D. L. Fuente, P. Thuwajit, C. Tuwajit, M. Hermoso, Chronic inflammation and cytokines in the tumour microenvironment, J. Immunol. Res., 2014 (2014), 149185. https://doi.org/10.1155/2014/149185 doi: 10.1155/2014/149185
    [40] K. Baird, J. Crossan, S. Ralston, Abnormal growth factor and cytokine expression in Dupuytren's contracture, J. Clin. Pathol., 46 (1993), 425–428. https://doi.org/10.1136/jcp.46.5.425 doi: 10.1136/jcp.46.5.425
    [41] K. Augoff, J. Kula, J. Gosk, R. Rutowski, Epidermal growth factor in Dupuytren's disease, Plast Reconstr. Surg., 115 (2005), 128–133. https://doi.org/10.1097/01.PRS.0000146038.61595.4A doi: 10.1097/01.PRS.0000146038.61595.4A
    [42] K. Augoff, R. Tabola, J. Kula, J. Gosk, R. Rutowski, Epidermal growth factor receptor (EGF-R) in Dupuytren's disease, J. Hand Surg. Br., 30 (2005), 570–573. https://doi.org/10.1016/j.jhsb.2005.06.008 doi: 10.1016/j.jhsb.2005.06.008
    [43] S. Sigismund, D. Avanzato, L. Lanzetti, Emerging functions of the EGFR in cancer, Mol. Oncol., 12 (2018), 3–20. https://doi.org/10.1002/1878-0261.12155 doi: 10.1002/1878-0261.12155
    [44] N. Jain, J. Moeller, V. Vogel, Mechanobiology of macrophages: how physical factors coregulate macrophage plasticity and phagocytosis, Ann. Rev. Biomed. Eng., 21 (2019), 267–297. https://doi.org/10.1146/annurev-bioeng-062117-121224 doi: 10.1146/annurev-bioeng-062117-121224
    [45] J. Lim, B. Choi, S. Lee, Y. Jang, J. Choi, Y. Kim, Regulation of wound healing by granulocyte-macrophage colony-stimulating factor after vocal fold injury, PLOS ONE, 8 (2013), e54256. https://doi.org/10.1371/journal.pone.0054256 doi: 10.1371/journal.pone.0054256
    [46] R. McFarlane, Patterns of the diseased fascia in the fingers in Dupuytren's contracture, Plast. Reconstr. Surg., 54 (1974), 31–44. https://doi.org/
    [47] D. Schwartz, Dupuytren's diathesis revisited: evaluation of prognostic indicators for risk of disease recurrence, J. Hand Ther., 20 (2007), 280–281. https://doi.org/https://doi.org/10.1197/j.jht.2007.04.014 doi: 10.1197/j.jht.2007.04.014
    [48] C. Eaton, Evidence-based medicine: Dupuytren contracture, Plast Reconstr. Surg., 133 (2014), 1239. https://doi.org/10.1097/PRS.0000000000000089 doi: 10.1097/PRS.0000000000000089
    [49] F. Syed, A. Thomas, S. S. ad V. Kolluru, S. Hart, A. Bayat, In vitro study of novel collagenase (XIAFLEX) on Dupuytren's disease fibroblasts displays unique drug related properties, PLOS ONE, 7 (2012), e31430. https://doi.org/10.1371/journal.pone.0031430 doi: 10.1371/journal.pone.0031430
    [50] A. Mantovani, M. Locati, Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions., Arterioscler. Thromb. Vasc. Biol., 33 (2013), 1478–1483. https://doi.org/10.1161/ATVBAHA.113.300168 doi: 10.1161/ATVBAHA.113.300168
    [51] C. Ferrante, S. Leibovich, Regulation of macrophage polarisation and wound healing, Adv. Wound Care, 1 (2012), 10–16. https://doi.org/10.1089/wound.2011.0307 doi: 10.1089/wound.2011.0307
    [52] S. Yotsukura, H. Mamitsuka, Evaluation of serum-based cancer biomarkers: a brief review from a clinical and computational viewpoint, Critical Reviews in Oncology/Hematology, 93 (2015), 103–115. https://doi.org/10.1016/j.critrevonc.2014.10.002 doi: 10.1016/j.critrevonc.2014.10.002
    [53] A. Bayat, D. McGrouther, Management of Dupuytren's disease - clear advice for an elusive condition, Ann. R. Coll. Surg. Engl., 88 (2006), 3–8. https://doi.org/10.1308/003588406X83104 doi: 10.1308/003588406X83104
    [54] G. Dolmans, P. Werker, H. Hennies, D. Furniss, E. Festen, L. Franke, et al., Wnt signaling and Dupuytren's disease, N. Engl. J. Med, 365 (2011), 307–317. https://doi.org/10.1056/NEJMoa1101029 doi: 10.1056/NEJMoa1101029
    [55] Y. Kim, J. Wallace, F. Li, M. Ostrowski, A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumour: a mathematical model and experiments, J. Math. Biol., 61 (2010), 401–421. https://doi.org/10.1007/s00285-009-0307-2 doi: 10.1007/s00285-009-0307-2
    [56] Y. Kim, A. Friedman, Interaction of tumour with its micro-environment: a mathematical model, Bull. Math. Biol., 72 (2010), 1029–1068. https://doi.org/10.1007/s11538-009-9481-z doi: 10.1007/s11538-009-9481-z
    [57] A. Friedman, Y. Kim, Tumour cell proliferation and migration under the influence of their microenvironment, Math. Biosci. Eng., 8 (2011), 371–383. https://doi.org/10.3934/mbe.2011.8.371 doi: 10.3934/mbe.2011.8.371
    [58] K. Norton, K. Jin, A. Popel, Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumour vasculature, J. Theor. Biol., 452 (2018), 56–68. https://doi.org/10.1016/j.jtbi.2018.05.003 doi: 10.1016/j.jtbi.2018.05.003
    [59] N. Picco, E. Sahai, P. Maini, A. Anderson, Integrating models to quantify environment-mediated drug resistance, Cancer Res., 77 (2017), 5409–5418. https://doi.org/10.1158/0008-5472.CAN-17-0835 doi: 10.1158/0008-5472.CAN-17-0835
    [60] R. Wadlow, B. Wittner, S. Finley, H. Bergquist, R. Upadhyay and S. Finn, et al., Systems-level modelling of cancer-fibroblast interaction, PLoS One, 4 (2009), e6888. https://doi.org/10.1371/journal.pone.0006888 doi: 10.1371/journal.pone.0006888
    [61] A. B. Tepole, E. Kuhl, Computational modelling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing, Comput. Methods Biomech. Biomed. Engin., 19 (2016), 13–30. https://doi.org/10.1080/10255842.2014.980821 doi: 10.1080/10255842.2014.980821
    [62] R. Cooper, R. Segal, R. Diegelmann, A. Reynolds, Modelling the effects of systemic mediators on the inflammatory phase of wound healing, J. Theor. Biol., 367 (2015), 86–99. https://doi.org/10.1016/j.jtbi.2014.11.008 doi: 10.1016/j.jtbi.2014.11.008
    [63] J. Dallon, J. Sherratt, P. Maini, Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration, J. Theor. Biol., 199 (1999), 449–471. https://doi.org/10.1006/jtbi.1999.0971 doi: 10.1006/jtbi.1999.0971
    [64] J. Flegg, S. Menon, P. Maini, D. McElwain, On the mathematical modelling of wound healing angiogenesis in skin as a reaction-transport process, Front. Physiol., 6 (2015), 262. https://doi.org/https://doi.org/10.3389/fphys.2015.00262
    [65] S. Jorgensen, J. Sanders, Mathematical models of wound healing and closure: a comprehensive review, Med. Biol. Eng. Comput., 54 (2016), 1297–1316. https://doi.org/10.1007/s11517-015-1435-z doi: 10.1007/s11517-015-1435-z
    [66] D. Koppenol, F. Vermolen, F. Niessen, P. van Zuijlen, K. Vuik, A biomechanical mathematical model for the collagen bundle distribution-dependent contraction and subsequent retraction of healing dermal wounds, Biomech. Model. Mechanobiol., 16 (2016), 345–361. https://doi.org/10.1007/s10237-016-0821-2 doi: 10.1007/s10237-016-0821-2
    [67] S. McDougall, J. Dallon, J. Sherratt, P. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Phil. Trans. R. Soc. A, 364 (2006), 1385–1405. https://doi.org/10.1098/rsta.2006.1773 doi: 10.1098/rsta.2006.1773
    [68] L. Olsen, J. Sherratt, P. Maini, A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile, J. Theor. Biol., 177 (1995), 113–128. https://doi.org/10.1006/jtbi.1995.0230 doi: 10.1006/jtbi.1995.0230
    [69] L. Olsen, J. Sherratt, P. Maini, A mathematical model for fibro-proliferative wound healing disorders, Bull. Math. Biol., 58 (1996), 787–808. https://doi.org/10.1007/BF02459482 doi: 10.1007/BF02459482
    [70] R. Tranquillo, J. Murray, Continuum model for fibroblast-driven wound contraction: inflammation mediation, J. Theor. Biol., 158 (1992), 135–172. https://doi.org/10.1016/s0022-5193(05)80715-5 doi: 10.1016/s0022-5193(05)80715-5
    [71] E. Valero, J. Garcia-Aznar, A. Menzel, M. Gomez-Benito, Challenges in the modelling of wound healing mechanisms in soft biological tissues, Ann. Biomed. Eng., 43 (2014), 1654–1665. https://doi.org/10.1007/s10439-014-1200-8 doi: 10.1007/s10439-014-1200-8
    [72] Y. Wang, C. Guerrero‐Juarez, Y. Qiu, H. Du, W. Chen, S. Figueroa, et al., A multiscale hybrid mathematical model of epidermal-dermal interactions during skin wound healing, Exp. Dermatol., 28 (2019), 493–502. https://doi.org/10.1111/exd.13909 doi: 10.1111/exd.13909
    [73] H. Waugh, J. Sherratt, Modelling the effects of treating diabetic wounds with engineered skin substitutes, Wound Rep. Reg., 15 (2007), 556–565. https://doi.org/10.1111/j.1524-475X.2007.00270.x doi: 10.1111/j.1524-475X.2007.00270.x
    [74] C. Xue, A. Friedman, C. Sen, A mathematical mode of ischemic cutaneous wounds, Proc. Natl. Acad. Sci. USA, 106 (2009), 16782–16787. https://doi.org/10.1073/pnas.0909115106 doi: 10.1073/pnas.0909115106
    [75] C. Ziraldo, Q. Mi, G. An, Y. Vodovotz, Computational modeling of inflammation and wound healing, Adv. wound care, 2 (2013), 527–537. https://doi.org/10.1089/wound.2012.0416 doi: 10.1089/wound.2012.0416
    [76] F. Balkwill, M. Capasso, T. Hagemann, The tumour microenvironment at a glance, J. Cell Sci., 125 (2012), 5591–5596. https://doi.org/10.1242/jcs.116392 doi: 10.1242/jcs.116392
    [77] J. Junker, E. Caterson, E. Eriksson, The microenvironment of wound healing, J. Craniofac. Surg., 24 (2013), 12–16. https://doi.org/10.1097/SCS.0b013e31827104fb doi: 10.1097/SCS.0b013e31827104fb
    [78] K. Chen, X. Hu, S. Blemker, J. Holmes, Multiscale computational model of Achilles tendon wound healing: Untangling the effects of repair and loading, PLoS Comput. Biol., 14 (2018), e1006652. https://doi.org/https://doi.org/10.1371/journal.pcbi.1006652
    [79] R. Shuttleworth, D. Trucu, Multiscale modelling of fibres dynamics and cell adhesion within boundary cancer invasion, Bull. Math. Biol., 81 (2019), 2176–2219. https://doi.org/10.1007/s11538-019-00598-w doi: 10.1007/s11538-019-00598-w
    [80] J. Jansen, E. Gaffney, J. Wagg, M. Coles, Combining mathematical models with experimentation to drive novel mechanistic insights into macrophage function, Front. Immunol., 10 (2019), 1283. https://doi.org/10.3389/fimmu.2019.01283 doi: 10.3389/fimmu.2019.01283
    [81] H. Warsinske, A. Wheaton, K. Kim, J. Linderman, B. Moore, D. Kirschner, Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis, Front. Pharmacol., 7 (2016), 183. https://doi.org/10.3389/fphar.2016.00183 doi: 10.3389/fphar.2016.00183
    [82] A. Oppelt, D. Kaschek, S. Huppelschoten, R. Sison-Young, F. Zhang and M. Buck-Wiese, et al., Model-based identification of TNF$\alpha$-induced IKK$\beta$-mediated and I$\kappa$B$\alpha$-mediated regulation of NF$\kappa$B signal transduction as a tool to quantify the impact of drug-induced liver injury compounds, NPJ Syst. Biol. Appl., 4 (2018), 23. https://doi.org/10.1038/s41540-018-0058-z doi: 10.1038/s41540-018-0058-z
    [83] J. Moermans, Recurrences after surgery for Dupuytren's disease, Eur. J. Plast. Surg., 20 (1997), 240–245. https://doi.org/10.1007/BF01159481 doi: 10.1007/BF01159481
    [84] S. Rehman, R. Goodacre, P. Day, A. Bayat, H. Westerhoff, Dupuytren's: a systems biology disease, Arthritis Res. Ther., 13 (2011), 238. https://doi.org/10.1186/ar3438 doi: 10.1186/ar3438
    [85] S. Rehman, P. Day, A. Bayat, H. Westerhoff, Understanding Dupuytren's disease using systems biology: a move away from reductionism, Front. Physiol., 3 (2012), 316. https://doi.org/10.3389/fphys.2012.00316 doi: 10.3389/fphys.2012.00316
    [86] M. van Beuge, E. ten Dam, P. Werker, R. Bank, Wnt pathway in Dupuytren disease: connecting profibrotic signals, Transl. Res., 166 (2015), 762–771. https://doi.org/10.1016/j.trsl.2015.09.006 doi: 10.1016/j.trsl.2015.09.006
    [87] W. Du, O. Elemento, Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies, Oncogene, 34 (2015), 3215–3225. https://doi.org/10.1038/onc.2014.291 doi: 10.1038/onc.2014.291
    [88] I. Korsunsky, K. McGovern, T. LaGatta, L. Loohuis, T. Grosso-Applewhite and N. Griffeth, et al., Systems biology of cancer: a challenging expedition for clinical and quantitative biologists, Front. Bioeng. Biotechnol., 2 (2014), 27. https://doi.org/https://doi.org/10.3389/fbioe.2014.00027
    [89] M. Martins-Green, Y. Vodovotz, P. Liu, Systems biology applied to wound healing, Wound Repair Regen., 18 (2010), 1–2. https://doi.org/10.1111/j.1524-475X.2009.00567.x doi: 10.1111/j.1524-475X.2009.00567.x
    [90] Y. Vodovotz, Translational systems biology of inflammation and healing, Wound Repair Regen., 18 (2010), 3–7. https://doi.org/10.1111/j.1524-475X.2009.00566.x doi: 10.1111/j.1524-475X.2009.00566.x
    [91] H. Baltzer, P. Binhammer, Cost-effectiveness in the management of Dupuytren's contracture, Bone Joint J., 95-B (2013), 1094–1100. https://doi.org/10.1302/0301-620X.95B8.31822 doi: 10.1302/0301-620X.95B8.31822
    [92] M. Brazzelii, M. Cruickshank, E. Tassie, P. McNamee, C. Robertson, A. Elders, et al., Collagenase clostridium histolycum for the treatment of Dupuytren's contracture: a systematic review and economic evaluation, Health Technol. Assess., 19 (2015), 90. https://doi.org/10.3310/hta19900 doi: 10.3310/hta19900
    [93] N. Chen, M. Shauver, K. Chung, Cost-effectiveness of open partial fasciectomy, needle aponeurotomy, and collagenase injection for Dupuytren contracture, J. Hand Surg. Am., 36 (2011), 1826–1834. https://doi.org/10.1016/j.jhsa.2011.08.004 doi: 10.1016/j.jhsa.2011.08.004
    [94] M. Dritsaki, O. Rivero-Arias, A. Gray, C. Ball, J. Nanchahal, What do we know about managing Dupuytren's disease cost-effectively?, BMC Musculoskeletal Disord., 19 (2018), 34. https://doi.org/10.1186/s12891-018-1949-2 doi: 10.1186/s12891-018-1949-2
    [95] C. Sau, M. Bounthavong, J. Tran, R. Wilson, Cost-utility analysis of collagenase clostridium histolycum, limited fasciectomy, and percutaneous needle fasciotomy in Dupuytren's contracture, Value Health, 14 (2011), A128. https://doi.org/10.1016/j.jval.2011.02.714 doi: 10.1016/j.jval.2011.02.714
    [96] M. Khashan, P. Smitham, W. Khan, N. Goddard, Dupuytren's disease: review of the current literature, Open Orthop. J., 5 (2011), 283–288. https://doi.org/10.2174/1874325001105010283 doi: 10.2174/1874325001105010283
    [97] I. Stura, D. Gabriele, C. Guiot, A simple PSA-based computational approach predicts the timing of cancer relapse in prostatectomised patients, Cancer Res., 76 (2016), 4941–4947. https://doi.org/10.1158/0008-5472.CAN-16-0460 doi: 10.1158/0008-5472.CAN-16-0460
    [98] S. Hori, S. Gambhir, Mathematical model identified blood biomarker-based early cancer detection strategies and limitations, Sci. Transl. Med., 3 (2011), 109ra116. https://doi.org/10.1126/scitranslmed.3003110 doi: 10.1126/scitranslmed.3003110
    [99] R. Eftimie, E. Hassanein, Improving cancer detection through combinations of cancer and immune biomarkers: a modelling approach, J. Transl. Med., 16 (2018), 73. https://doi.org/10.1186/s12967-018-1432-8 doi: 10.1186/s12967-018-1432-8
    [100] M. McKenna, J. Weis, V. Quaranta, T. Yankeelov, Leveraging mathematical modeling to quantify pharmacokinetic and pharmacodynamic pathways: equivalent dose metric, Front. Physiol., 10 (2019), 616. https://doi.org/10.3389/fphys.2019.00616 doi: 10.3389/fphys.2019.00616
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2216) PDF downloads(129) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog