Research article Special Issues

A stochastic mathematical model of two different infectious epidemic under vertical transmission

  • Received: 11 October 2021 Revised: 02 December 2021 Accepted: 10 December 2021 Published: 29 December 2021
  • In this study, considering the effect of environment perturbation which is usually embodied by the alteration of contact infection rate, we formulate a stochastic epidemic mathematical model in which two different kinds of infectious diseases that spread simultaneously through both horizontal and vertical transmission are described. To indicate our model is well-posed and of biological significance, we prove the existence and uniqueness of positive solution at the beginning. By constructing suitable $ Lyapunov $ functions (which can be used to prove the stability of a certain fixed point in a dynamical system or autonomous differential equation) and applying $ It\hat{o} $'s formula as well as $ Chebyshev $'s inequality, we also establish the sufficient conditions for stochastic ultimate boundedness. Furthermore, when some main parameters and all the stochastically perturbed intensities satisfy a certain relationship, we finally prove the stochastic permanence. Our results show that the perturbed intensities should be no greater than a certain positive number which is up-bounded by some parameters in the system, otherwise, the system will be surely extinct. The reliability of theoretical results are further illustrated by numerical simulations. Finally, in the discussion section, we put forward two important and interesting questions left for further investigation.

    Citation: Xunyang Wang, Canyun Huang, Yixin Hao, Qihong Shi. A stochastic mathematical model of two different infectious epidemic under vertical transmission[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2179-2192. doi: 10.3934/mbe.2022101

    Related Papers:

  • In this study, considering the effect of environment perturbation which is usually embodied by the alteration of contact infection rate, we formulate a stochastic epidemic mathematical model in which two different kinds of infectious diseases that spread simultaneously through both horizontal and vertical transmission are described. To indicate our model is well-posed and of biological significance, we prove the existence and uniqueness of positive solution at the beginning. By constructing suitable $ Lyapunov $ functions (which can be used to prove the stability of a certain fixed point in a dynamical system or autonomous differential equation) and applying $ It\hat{o} $'s formula as well as $ Chebyshev $'s inequality, we also establish the sufficient conditions for stochastic ultimate boundedness. Furthermore, when some main parameters and all the stochastically perturbed intensities satisfy a certain relationship, we finally prove the stochastic permanence. Our results show that the perturbed intensities should be no greater than a certain positive number which is up-bounded by some parameters in the system, otherwise, the system will be surely extinct. The reliability of theoretical results are further illustrated by numerical simulations. Finally, in the discussion section, we put forward two important and interesting questions left for further investigation.



    加载中


    [1] S. MacFarlane, M. Burnet, F. M. Burnet, D. O. White, Natural History of Infectious Disease, CUP Archive, 1972.
    [2] S. M. Massinissa, A. Farah, M. Piers, M. Bernadette, The WHO R & D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts, Antiviral Res., 159 (2018), 63–67. https://doi.org/10.1016/j.denabs.2017.11.0 doi: 10.1016/j.denabs.2017.11.0
    [3] P. L. Konstantin, S. Mewa, C. Roberto, L. G. Maria, A multi-antigen print immunoassay for the development of serological diagnosis of infectious diseases, J. Immunol. Methods, 242 (2000), 91–100.
    [4] C. P. Bhunu, W. Garira, Z. Mukandavire, Modeling HIV/AIDS and tuberculosis coinfection, Bull. Math. Biol., 71 (2009), 1745–1780. https://doi.org/10.1007/s11538-009-9423-9 doi: 10.1007/s11538-009-9423-9
    [5] E. Massad, M. N. Burattini, F. A. B. Coutinho, H. M. Yang, S. M. Raimundo, Modeling the interaction between AIDS and tuberculosis, Math. Comput. Modell., 17 (1993), 7–21. https://doi.org/10.1016/0895-7177(93)90013-O doi: 10.1016/0895-7177(93)90013-O
    [6] B. Boukanjime, M. E. Fatini, A. Laaribi, R. Taki, Analysis of a deterministic and a stochastic epidemic model with two distinct epidemics hypothesis, Phys. A: Stat. Mech. Appl., 534 (2019), 122321.
    [7] S. P. Rajasekar, M. Pitchaimani, Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses, Chaos, Solitons Fractals, 118 (2019), 207–221. https://doi.org/10.1016/j.chaos.2018.11.023 doi: 10.1016/j.chaos.2018.11.023
    [8] X. Z. Meng, S. N. Zhao, T. Feng, T. H. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227–242. https://doi.org/10.1016/j.jmaa.2015.07.056 doi: 10.1016/j.jmaa.2015.07.056
    [9] M. Martcheva, A non-autonomous multi-strain SIS epidemic model, J. Biol. Dyn., 3 (2016), 235–251.
    [10] A. S. Ackleh, L. J. Allen, Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size, J. Math. Biol., 47 (2003), 153–168. https://doi.org/10.1007/s00285-003-0207-9 doi: 10.1007/s00285-003-0207-9
    [11] R. K. Naji, R. M. Hussien, The dynamics of epidemic model with two types of infectious diseases and vertical transmission, J. Appl. Math., 2016 (2016), 1–16. https://doi.org/10.1155/2016/4907964 doi: 10.1155/2016/4907964
    [12] Y. Cai, Y. Kang, M. Banerjee, W. Wang, Complex Dynamics of a host–parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Anal.: Real World Appl., 40 (2018), 444–465. https://doi.org/10.1016/j.nonrwa.2017.10.001 doi: 10.1016/j.nonrwa.2017.10.001
    [13] D. Murillo, A. Murillo, S. Lee, The role of vertical transmission in the control of dengue fever, Int. J. Environ. Res. Public Health, 16 (2019), 803.
    [14] L. Zhao, H. Huo, Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission, Math. Biosci. Eng., 18 (2021), 6012–6033. https://doi.org/10.3934/mbe.2021301 doi: 10.3934/mbe.2021301
    [15] M. S. Khuroo, S. Kamili, S. Jameel, Vertical transmission of hepatitis E virus, Lancet, 345 (2019), 1025–1026. https://doi.org/10.1016/S0140-6736(95)90761-0 doi: 10.1016/S0140-6736(95)90761-0
    [16] N. Dalal, D. Greenhalgh, X. R. Mao, A Stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325 (2007), 36–57. https://doi.org/10.1055/s-2006-959087 doi: 10.1055/s-2006-959087
    [17] C. Y. Ji, D. Q. Jiang, N. Z. Shi, The behavior of an SIR epidemic model with stochastic perturbation, Stochastic Anal. Appl., 30 (2012), 755–773. https://doi.org/10.1080/07362994.2012.684319 doi: 10.1080/07362994.2012.684319
    [18] C. Y. Ji, D. Q. Jiang, N. Z. Shi, Multigroup SIR epidemic model with stochastic perturbation, Phys. A: Stat. Mech. Appl., 390 (2011), 1747–1762. https://doi.org/10.1016/j.physa.2010.12.042 doi: 10.1016/j.physa.2010.12.042
    [19] Y. N. Zhao, D. Q. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [20] K. Hattaf, M. Mahrouf, J. Adnani, Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity, Phys. A: Stat. Mech. Appl., 490 (2018), 591–600. https://doi.org/10.1016/j.physa.2017.08.043 doi: 10.1016/j.physa.2017.08.043
    [21] K. Hattaf, A. Lashari, Y. Louartassi, N. Yousfi, A delayed SIR epidemic model with a general incidence rate, Electron. J. Qualitative Theory Differ. Equations, 2013 (2013), 1–9.
    [22] A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. https://doi.org/10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc
    [23] A. Din, Y. Li, The extinction and persistence of a stochastic model of drinking alcohol, Results Phys., 28 (2021), 104649. https://doi.org/10.1016/j.rinp.2021.104649 doi: 10.1016/j.rinp.2021.104649
    [24] A. Din, T. Khan, Y. Li, H. Tahir, A. Khan, W. A. Khan, Mathematical analysis of dengue stochastic epidemic model, Results Phys., 20 (2021), 103719. https://doi.org/10.1016/j.rinp.2020.103719 doi: 10.1016/j.rinp.2020.103719
    [25] A. Din, Y. Li, T. Khan, K. Anwar, G Zaman, Stochastic dynamics of hepatitis B epidemics, Results Phys., 20 (2021), 103730. https://doi.org/10.1016/j.rinp.2020.103730 doi: 10.1016/j.rinp.2020.103730
    [26] X. Mao, Stochastic Differential Equations and Their Applications, Chichester Horwood Publishing, 1997.
    [27] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [28] M. Cristofol, L. Roques, Simultaneous determination of the drift and diffusion coefficients in stochastic differential equations, Inverse Probl., 33 (2017), 095006. https://doi.org/10.1088/1361-6420/aa7a1c doi: 10.1088/1361-6420/aa7a1c
    [29] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. https://doi.org/10.3390/computation8020049 doi: 10.3390/computation8020049
    [30] A. Din, Y. Li, Lévy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal–fractional Atangana–Baleanu order model, Phys. Scr., 96 (2021), 124008. https://doi.org/10.1088/1402-4896/ac1c1a doi: 10.1088/1402-4896/ac1c1a
    [31] A. Din, Y. Li, F. M. Khan, Z. U. Khan, P. Liu, On Analysis of fractional order mathematical model of Hepatitis B using Atangana–Baleanu Caputo (ABC) derivative, Fractals, (2021), 2240017. https://doi.org/10.1142/S0218348X22400175 doi: 10.1142/S0218348X22400175
    [32] A. Din, Y. Li, A. Yusuf, A. I. Ali, Caputo type fractional operator applied to Hepatitis B system, Fractals, (2021), 2240023.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2362) PDF downloads(201) Cited by(7)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog