We consider a two-dimensional, uniform, incompressible and free convection flow of a nano-fluid along a plane. The plate is located facing upward about the porous medium. Throughout the investigation, thermal slip, chemical reaction, heat emission/absorption is considered. In the modeling of nano-fluid we have considered the dynamic effect along with the Brownian and thermophoresis. In obtaining the governing equations, including the boundary conditions, an appropriate scaling is applied. The governing momentum equations, including thermal energy and nanoparticles equations are translated into a group of nonlinear ODEs by using Lie symmetry group transformation. The transformed equations are then solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order. The numerical results of velocity, temperature, and nanoparticle volume fraction profiles for varied physical parameters will be discussed and analyzed at the end. The discussion also includes the local Nusselt and the local Sherwood numbers against several of the systems' physical parameters. It is found that the velocity and temperature decrease with thermal slip and heat absorption whilst it increases by increasing heat generation and chemical reaction order. Our present results will be compared with similar existing literature results.
Citation: Abdulaziz Alsenafi, M. Ferdows. Effects of thermal slip and chemical reaction on free convective nanofluid from a horizontal plate embedded in a porous media[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4817-4833. doi: 10.3934/mbe.2021245
We consider a two-dimensional, uniform, incompressible and free convection flow of a nano-fluid along a plane. The plate is located facing upward about the porous medium. Throughout the investigation, thermal slip, chemical reaction, heat emission/absorption is considered. In the modeling of nano-fluid we have considered the dynamic effect along with the Brownian and thermophoresis. In obtaining the governing equations, including the boundary conditions, an appropriate scaling is applied. The governing momentum equations, including thermal energy and nanoparticles equations are translated into a group of nonlinear ODEs by using Lie symmetry group transformation. The transformed equations are then solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order. The numerical results of velocity, temperature, and nanoparticle volume fraction profiles for varied physical parameters will be discussed and analyzed at the end. The discussion also includes the local Nusselt and the local Sherwood numbers against several of the systems' physical parameters. It is found that the velocity and temperature decrease with thermal slip and heat absorption whilst it increases by increasing heat generation and chemical reaction order. Our present results will be compared with similar existing literature results.
[1] | D. A. Nield, A. Bejan, Convection in Porous Media, 3nd edition, Springer-Verlag, 2006. |
[2] | I. Pop, D. B. Ingham, Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media, Pergamon, 2001. |
[3] | K. Vafai, Handbook of Porous Media, 2nd edition, Taylor Francis, New York, 2005. |
[4] | M. V. Krishna, B. V. Swarnalathamma, A. J. Chamkha, Investigations of soret, joule and hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate, J. Ocean Eng. Sci., 4 (2019), 263-275. doi: 10.1016/j.joes.2019.05.002 |
[5] | D. B. Ingham, I. Pop, Transport Phenomena in Porous Media Ⅲ, Elsevier, Oxford, 2005. |
[6] | K. Vafai, Porous Media: Applications in Biological Systems and Biotechnology, CRC Press, Boca Raton, 2010. |
[7] | D. J. Pradeep, M. M. Noel, A finite horizon Markov decision process based reinforcement learning control of a rapid thermal processing system, J. Process Control, 68 (2018), 218-225. doi: 10.1016/j.jprocont.2018.06.002 |
[8] | P. Vadasz, Emerging Topics in Heat and Mass Transfer in Porous Media, Springer Netherlands, 2008. |
[9] | S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fed., 66 (1995), 99-105. |
[10] | S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001), 2252-2254. doi: 10.1063/1.1408272 |
[11] | S. Lee, S. U. S. Choi, S. Li, J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf., 121 (1999), 280-289. doi: 10.1115/1.2825978 |
[12] | W. Bu-Xuan, L. P. Zhou, X. F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transf., 46 (2003), 2665-2672. doi: 10.1016/S0017-9310(03)00016-4 |
[13] | J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanopart. Res., 6 (2004), 577-588. doi: 10.1007/s11051-004-3170-5 |
[14] | B. Ghasemi, S. M. Aminossadati, Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid, Numer. Heat Trans. A: App., 55 (2009), 807-823. doi: 10.1080/10407780902864623 |
[15] | L. Godson, B. Raja, D. Mohan Lal, S. Wongwises, Enhancement of heat transfer using nanofluids -An overview, Renew. Sustain. Energy Rev., 14 (2010), 629-641. doi: 10.1016/j.rser.2009.10.004 |
[16] | D. A. Nield, A. V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Trans., 52 (2009), 5792-5795. doi: 10.1016/j.ijheatmasstransfer.2009.07.024 |
[17] | D. A. Nield, A. V. Kuznetsov, Thermal instability in a porous medium layer saturated by a nanofluid, Int. J. Heat Mass Trans., 52 (2009), 5796-5801. doi: 10.1016/j.ijheatmasstransfer.2009.07.023 |
[18] | P. Cheng, W. J. Minkowycz, Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res., 82 (1977), 2040-2044. doi: 10.1029/JB082i014p02040 |
[19] | R. S. R. Gorla, A. Chamkha, Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid, J. Mod. Phys., 2 (2011), 62-71. doi: 10.4236/jmp.2011.22011 |
[20] | M. A. A. Hamad, M. Ferdows, Similarity solution of boundary layer stagnation flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 132-140. doi: 10.1016/j.cnsns.2011.02.024 |
[21] | S. Ahmad, I. Pop, Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids, Int. Commun. Heat Mass Trans., 37 (2010), 987-991. doi: 10.1016/j.icheatmasstransfer.2010.06.004 |
[22] | N. Arifin, R. Nazar, I. Pop, Free and mixed convection boundary layer flow past a horizontal surface embedded in a porous medium filled with a nanofluid, J. Thermophys. Heat Trans., 26 (2012), 375-382. doi: 10.2514/1.T3645 |
[23] | L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982. |
[24] | N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, New York, 1999. |
[25] | G. W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989. |
[26] | M. V. Krishna, M. G. Reddy, A. J. Chamkha, Heat and mass transfer on MHD free convective flow over an infinite non-conducting vertical flat porous plate, Int. J. Fluid Mech. Res., 46 (2019), 1-25. doi: 10.1615/InterJFluidMechRes.2018025004 |
[27] | M. V. Krishna, Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature, Int. Commun. Heat Mass Trans., 119 (2020), 104927. doi: 10.1016/j.icheatmasstransfer.2020.104927 |
[28] | M. V. Krishna, A. J. Chamkha, Hall and ion slip effects on magneto-hydrodynamic convective rotating flow of Jeffreys fluid over an impulsively moving vertical plate embedded in a saturated porous medium with Ramped wall temperature, Numer. Methods Partial D. E., 37 (2021), 2150-2177. doi: 10.1002/num.22670 |
[29] | M. V. Krishna, A. J. Chamkha, Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium, Results Phys., 15 (2019), 102652. doi: 10.1016/j.rinp.2019.102652 |
[30] | M. V. Krishna, N. A. Ahamad, A. J. Chamkha, Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate, Alex. Eng. J., 59 (2020), 565-577. doi: 10.1016/j.aej.2020.01.043 |
[31] | M. V. Krishna, N. A. Ahamad, A. J. Chamkha, Radiation absorption on MHD convective flow of nanofluids through vertically travelling absorbent plate, Ain Shams Eng. J., 11 (2021), 1-14. |
[32] | A. B. Patil, P. P. Humane, V. S. Patil, G. R. Rajput, MHD Prandtl nanofluid flow due to convectively heated stretching sheet below the control of chemical reaction with thermal radiation, Int. J. Ambient Energy, (2021), 1-13. |
[33] | M. Yürüsoy, M. Pakdemirli, Symmetry reductions of unsteady three-dimensional boundary layers of some non-Newtonian fluids, Int. J. Eng. Sci., 35 (1997), 731-740. doi: 10.1016/S0020-7225(96)00115-2 |
[34] | M. Yürüsoy, M. Pakdemirli, Group classification of a non-Newtonian fluid model using classical approach and equivalence transformations, Int. J. Nonlinear Mech., 34 (1999), 341-346. doi: 10.1016/S0020-7462(98)00037-7 |
[35] | R. Abdul-Kahar, R. Kandasamy, I. Muhaimin, Scaling group transformation for boundary layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation, Comput. Fluids, 52 (2011), 15-21. doi: 10.1016/j.compfluid.2011.08.003 |
[36] | M. A. A. Hamad, M. J. Uddin, A. I. M. Ismail, Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions, Int. J. Heat Mass Trans., 55 (2012), 1355-1362. doi: 10.1016/j.ijheatmasstransfer.2011.08.043 |
[37] | V. S. Patil, A. B. Patil, S. Ganesh, P. P. Humane, N. S. Patil, Unsteady MHD flow of a nano powell-eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation, Mater. Today: Proc., 44 (2021), 3767-3776. doi: 10.1016/j.matpr.2020.11.860 |
[38] | A. A. Afify, N. S. Elgazery, Lie group analysis for the effects of chemical reaction on MHD stagnation-point flow of heat and mass transfer towards a heated porous stretching sheet with suction or injection, Nonlinear Anal-Model., 17 (2012), 1-15. doi: 10.15388/NA.17.1.14074 |
[39] | M. Ferdows, M. J. Uddin, A. A. Afify, Scaling group transformation for MHD boundary layer free convective heat and mass transfer flow past a convectively heated nonlinear radiating stretching sheet, Int. J. Heat Mass Trans., 56 (2013), 181-187. doi: 10.1016/j.ijheatmasstransfer.2012.09.020 |
[40] | M. J. Uddin, M. Ferdows, M. M. Rashidi, A. B. Parsa, Group analysis and numerical solution of slip flow of a nanofluid in porous media with heat transfer, Progr. Comput. Fluid Dynam. Int. J., 16 (2016), 190-200. doi: 10.1504/PCFD.2016.076297 |
[41] | M. J. Uddin, W.A. Khan, A. I. M. Ismail, Free convection boundary layer flow from a heated upward facing horizontal flat plate embedded in a porous medium filled by a nanofluid with convective boundary condition, Transp. Porous Media, 92 (2012), 867-881. doi: 10.1007/s11242-011-9938-z |
[42] | M. Rashidi, E. Momoniat, M. Ferdows, A. Basiriparsa, Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate on a porous media, Math. Prob. Eng., (2014), 239082. |
[43] | A. Aziz, W. A. Khan, I. Pop, Free convection boundary layer flow past a horizontal flat plate embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms, Int. J. Therm. Sci., 56 (2012), 48-57. doi: 10.1016/j.ijthermalsci.2012.01.011 |
[44] | W. A. Khan, I. Pop, Free convection boundary layer flow past a horizontal flat plate embedded in a porous medium filled with a nanofluid, J. Heat Transf., 133 (2011), 094501. doi: 10.1115/1.4003834 |
[45] | J. Buongiorno, Convective transport in nanofluids, J. Heat Transf., 128 (2006), 240-250. doi: 10.1115/1.2150834 |
[46] | D. A. Nield, A. V. Kuznetsov, The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Trans., 54 (2011), 374-378. doi: 10.1016/j.ijheatmasstransfer.2010.09.034 |
[47] | T. Tapanidis, G. Tsagas, H. P. Mazumdar, Application of scaling group of transformations to viscoelastic second grade fluid flow, Nonlinear Funct. Anal. Appl., 8 (2003), 345-350. |
[48] | S. Mukhopadhyay, G. C. Layek, Effects of variable fluid viscosity on flow past a heated stretching sheet embedded in a porous medium in presence of heat source/sink, Meccanica, 47 (2012), 863-876. doi: 10.1007/s11012-011-9457-6 |
[49] | A. G. Hansen, Similarity Analysis of Boundary Value Problems in Engineering, Prentice Hall, New Jersey, 1964. |
[50] | W. F. Ames, Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, 1972. |
[51] | P. Cheng, I. D. Chang, Buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces, Int. J. Heat Mass Trans., 19 (1976), 1267-1272. doi: 10.1016/0017-9310(76)90078-8 |
[52] | A. Aziz, A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1064-1068. doi: 10.1016/j.cnsns.2008.05.003 |
[53] | R. E. White, V. R. Subramanian, Computational Methods in Chemical Engineering with Maple, Springer-Verlag, 2010. |
[54] | A. Pantokratoras, Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity: a numerical reinvestigation, Int. J. Heat Mass Trans., 51 (2008), 104-110. doi: 10.1016/j.ijheatmasstransfer.2007.04.007 |
[55] | A. Alsaedi, M. Awais, T. Hayat, Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4210-4223. doi: 10.1016/j.cnsns.2012.03.008 |