Research article Special Issues

Analysis of corticomuscular connectivity during walking using vine copula

  • Received: 16 January 2021 Accepted: 26 April 2021 Published: 18 May 2021
  • Corticomuscular connectivity plays an important role in the neural control of human motion. This study recorded electroencephalography (EEG) and surface electromyography (sEMG) signals from subjects performing specific tasks (walking on level ground and on stairs) based on metronome instructions. This study presents a novel method based on vine copula to jointly model EEG and sEMG signals. The advantage of vine copula is its applicability in the construction of dependency structures to describe the connectivity between the cortex and muscles during different movements. A corticomuscular function network was also constructed by analyzing the dependence of each channel sample. The successfully constructed network shows information transmission between different divisions of the cortex, between muscles, and between the cortex and muscles when the body performs lower limb movements. Additionally, it highlights the potential of the vine copula concept used in this study, indicating that significant changes in the corticomuscular network under lower limb movements can be quantified by effective connectivity values.

    Citation: Xiebing Chen, Yuliang Ma, Xiaoyun Liu, Wanzeng Kong, Xugang Xi. Analysis of corticomuscular connectivity during walking using vine copula[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4341-4357. doi: 10.3934/mbe.2021218

    Related Papers:

  • Corticomuscular connectivity plays an important role in the neural control of human motion. This study recorded electroencephalography (EEG) and surface electromyography (sEMG) signals from subjects performing specific tasks (walking on level ground and on stairs) based on metronome instructions. This study presents a novel method based on vine copula to jointly model EEG and sEMG signals. The advantage of vine copula is its applicability in the construction of dependency structures to describe the connectivity between the cortex and muscles during different movements. A corticomuscular function network was also constructed by analyzing the dependence of each channel sample. The successfully constructed network shows information transmission between different divisions of the cortex, between muscles, and between the cortex and muscles when the body performs lower limb movements. Additionally, it highlights the potential of the vine copula concept used in this study, indicating that significant changes in the corticomuscular network under lower limb movements can be quantified by effective connectivity values.



    加载中


    [1] V. Youssofzadeh, D. Zanotto, K. W. Lin, S. K. Agrawal, G. Prasad, Directed functional connectivity in fronto-centroparietal circuit correlates with motor adaptation in Gait training, IEEE Trans. Neural Syst. Rehabil. Eng., 24 (2016), 1265-1275. doi: 10.1109/TNSRE.2016.2551642
    [2] M. Günther, R. P. Bartsch, Y. Miron-Shahar, S. Hassin-Baer, R. Inzelberg, J. Kurths, et al., Coupling between leg muscle activation and EEG during normal walking, Intentional stops, and freezing of Gait in Parkinson's disease, Front. Physiol., 10 (2019), 870.
    [3] S. M. Peterson, D. P. Ferris, Group-level cortical and muscular connectivity during perturbations to walking and standing balance, NeuroImage, 198 (2019), 93-103. doi: 10.1016/j.neuroimage.2019.05.038
    [4] Y. Yang, T. Solis-Escalante, J. Yao, F. C. T. Helm, J. P. A. Dewald, A. C. Schouten, Nonlinear connectivity in the human stretch reflex assessed by cross-frequency phase coupling, Int. J. Neural Syst., 26 (2016), 1650043. doi: 10.1142/S012906571650043X
    [5] F. Artoni, C. Fanciullacci, F. Bertolucci, A. Panarese, S. Makeig, S. Micera, et al., Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking, NeuroImage, 159 (2017), 403-416. doi: 10.1016/j.neuroimage.2017.07.013
    [6] T. Yoshida, K. Masani, K. Zabjek, R. Chen, M. R. Popovic, Dynamic increase in corticomuscular coherence during bilateral, cyclical ankle movements, Front. Human Neurosci., 11 (2017), 155.
    [7] Y. Gao, L. Ren, R. Li, Y. Zhang, Electroencephalogram-Electromyography coupling analysis in stroke based on symbolic transfer entropy, Front. Neurol., 8 (2018), 716. doi: 10.3389/fneur.2017.00716
    [8] P. M. Rossini, R. D. Iorio, M. Bentivoglio, G. Bertini, F. Ferreri, C. Gerloff, et al., Methods for analysis of brain connectivity: An IFCN-sponsored review, Clin. Neurophysiol., 130 (2019), 1833-1858. doi: 10.1016/j.clinph.2019.06.006
    [9] M. Bourguignon, V. Jousmaki, S. S. Dalal, K. Jerbi, X. D. Tiege, Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings, NeuroImage, 203 (2019), 116177. doi: 10.1016/j.neuroimage.2019.116177
    [10] S. Hu, H. Wang, J. Zhang, W. Kong, Y. Cao, R. Kozma, Comparison analysis: Granger causality and new causality and their applications to motor imagery, IEEE Trans. Neural Networks Learn. Syst., 27 (2016), 1429-1444. doi: 10.1109/TNNLS.2015.2441137
    [11] V. M. Vergara, R. Miller, V. Calhoun, An information theory framework for dynamic functional domain connectivity, J. Neurosci. Methods, 284 (2017), 103-111. doi: 10.1016/j.jneumeth.2017.04.009
    [12] P. Xie, F. M. Yang, X. Chen, Y. H. Du, X. G. Wu, Functional coupling analyses of electroencephalogram and electromyogram based on variational mode decomposition-transfer entropy, Acta Phys. Sin., 65 (2016), 118701-118701.
    [13] T. W. Boonstra, A. Danna-Dos-Santos, H. B. Xie, M. Roerdink, J. F. Stins, M. Breakspear, Muscle networks: Connectivity analysis of EMG activity during postural control, Sci. Rep., 5 (2016), 17830. doi: 10.1038/srep17830
    [14] P. Jensen, R. Frisk, M. E. Spedden, S. S. Geertsen, L. J. Bouyer, D. M. Halliday, et al., Using corticomuscular and intermuscular coherence to assess cortical contribution to ankle plantar flexor activity during Gait, J. Motor Behav., 51 (2019), 668-680. doi: 10.1080/00222895.2018.1563762
    [15] F. He, S. A. Billings, H. L. Wei, P. G. Sarrigiannis, A nonlinear causality measure in the frequency domain: nonlinear partial directed coherence with applications to EEG, J. Neurosci. Methods, 225 (2014), 71-80. doi: 10.1016/j.jneumeth.2014.01.013
    [16] C. C. Chen, J. M. Kilner, K. J. Friston, S. J. Kiebel, R. K. Jolly, N. S. Ward, Nonlinear coupling in the human motor system, J. Neurosci., 30 (2010), 8393-8399. doi: 10.1523/JNEUROSCI.1194-09.2010
    [17] M. Sun, I. Konstantelos, S. Tindemans, G. Strbac, Evaluating composite approaches to modelling high-dimensional stochastic variables in power systems, in 2016 Power Systems Computation Conference (PSCC), (2016), 1-8.
    [18] J. Dauwels, H. Yu, X. Wang, F. Vialatte, C. Latchoumane, J. Jeong, et al., Inferring brain networks through graphical models with hidden variables, in MLINI'11 Proceedings of the 1st International Conference on Machine Learning and Interpretation in Neuroimaging, (2012), 194-201.
    [19] M. Hu, H. Liang, A copula approach to assessing Granger causality, NeuroImage, 100 (2014), 125-134. doi: 10.1016/j.neuroimage.2014.06.013
    [20] B. Zhang, Y. Wei, J. Yu, X. Lai, Z. Peng, Forecasting VaR and ES of stock index portfolio: A Vine copula method, Phys. A Stat. Mech. Appl., 416 (2014), 112-124. doi: 10.1016/j.physa.2014.08.043
    [21] H. Joe, Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters, Lect. Notes Monogr. Ser., (1996), 120-141.
    [22] C. Almeida, C. Czado, H. Manner, Modeling high-dimensional time-varying dependence using dynamic D-vine models, Appl. Stochastic Models Bus. Ind., 32 (2016), 621-638. doi: 10.1002/asmb.2182
    [23] K. Aas, C. Czado, A. Frigessi, H. Bakken, Pair-copula constructions of multiple dependence, Insur. Math. Econ., 44 (2009), 182-198. doi: 10.1016/j.insmatheco.2007.02.001
    [24] T. Bedford, R. M. Cooke, Probability density decomposition for conditionally dependent random variables modeled by vines, Ann. Math. Artif. Intell., 32 (2001), 245-268. doi: 10.1023/A:1016725902970
    [25] T. Bedford, R. M. Cooke, Vines: A new graphical model for dependent random variables, Ann. Stat., 30 (2002), 1031-1068.
    [26] M. Sklar, Fonctions de repartition an dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8 (1959), 229-231.
    [27] C. Genest, A. C. Favre, Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., 12 (2007), 347-368. doi: 10.1061/(ASCE)1084-0699(2007)12:4(347)
    [28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, USA.
    [29] S. Achard, E. Bullmore, Efficiency and cost of economical brain functional networks, Plos Comput. Biol., 3 (2007), e17.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2892) PDF downloads(116) Cited by(3)

Article outline

Figures and Tables

Figures(9)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog