Research article Special Issues

Task arrival based energy efficient optimization in smart-IoT data center

  • Received: 08 December 2020 Accepted: 04 March 2021 Published: 22 March 2021
  • With the growth and expansion of cloud data centers, energy consumption has become an urgent issue for smart cities system. However, most of the current resource management approaches focus on the traditional cloud computing scheduling scenarios but fail to consider the feature of workloads from the Internet of Things (IoT) devices. In this paper, we analyze the characteristic of IoT requests and propose an improved Poisson task model with a novel mechanism to predict the arrivals of IoT requests. To achieve the trade-off between energy saving and service level agreement, we introduce an adaptive energy efficiency model to adjust the priority of the optimization objectives. Finally, an energy-efficient virtual machine scheduling algorithm is proposed to maximize the energy efficiency of the data center. The experimental results show that our strategy can achieve the best performance in comparison to other popular schemes.

    Citation: Bin Wang, Fagui Liu. Task arrival based energy efficient optimization in smart-IoT data center[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2713-2732. doi: 10.3934/mbe.2021138

    Related Papers:

  • With the growth and expansion of cloud data centers, energy consumption has become an urgent issue for smart cities system. However, most of the current resource management approaches focus on the traditional cloud computing scheduling scenarios but fail to consider the feature of workloads from the Internet of Things (IoT) devices. In this paper, we analyze the characteristic of IoT requests and propose an improved Poisson task model with a novel mechanism to predict the arrivals of IoT requests. To achieve the trade-off between energy saving and service level agreement, we introduce an adaptive energy efficiency model to adjust the priority of the optimization objectives. Finally, an energy-efficient virtual machine scheduling algorithm is proposed to maximize the energy efficiency of the data center. The experimental results show that our strategy can achieve the best performance in comparison to other popular schemes.



    加载中


    [1] A. Camero, E. Alba, Smart city and information technology: A review, Cities, 93 (2019), 84-94. doi: 10.1016/j.cities.2019.04.014
    [2] J. Chin, V. Callaghan, S. B. Allouch, The Internet-of-Things: Reflections on the past, present and future from a user-centered and smart environment perspective, J. Ambient Intell. Smart Environ., 11 (2019), 45-69. doi: 10.3233/AIS-180506
    [3] C. J. Martin, J. Evans, A. Karvonen, Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America, Technol. Forecast. Soc. Change, 133 (2018), 269-278. doi: 10.1016/j.techfore.2018.01.005
    [4] P. Cardullo, R. Kitchin, Being a 'citizen' in the smart city: up and down the scaffold of smart citizen participation in Dublin, Ireland, GeoJournal, 84 (2019), 1-13. doi: 10.1007/s10708-018-9845-8
    [5] V. Fernandez-Anez, J. M. Fernández-Güell, R. Giffinger, Smart city implementation and discourses: An integrated conceptual model. The case of Vienna, Cities, 78 (2018), 4-16. doi: 10.1016/j.cities.2017.12.004
    [6] S. Shashank, A. Gokhale, Dynamic resource management across cloud-edge resources for performance-sensitive applications, in 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), IEEE, (2017).
    [7] A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints, IEEE Trans. Parallel Distrib. Syst., 24 (2013), 1366-1379. doi: 10.1109/TPDS.2012.240
    [8] J. Abawajy, M. F. Fudzee, M. M. Hassan, M. Alrubaian, Service level agreement management framework for utility-oriented computing platforms, J. Supercomput., 71 (2015), 4287-4303. doi: 10.1007/s11227-015-1526-5
    [9] H. Haarstad, M. W. Wathne, Are smart city projects catalyzing urban energy sustainability?, Energy Policy, 129 (2019), 918-925. doi: 10.1016/j.enpol.2019.03.001
    [10] A. Toor, S. Islam, N. Sohail, A. Akhunzada, J. Boudjadar, H. A. Khattak, et al., Energy and performance aware fog computing: A case of DVFS and green renewable energy, Future Gener. Comput. Syst., 101 (2019), 1112-1121. doi: 10.1016/j.future.2019.07.010
    [11] N. Kulkarni, S. V. Lalitha, S. A. Deokar, Real time control and monitoring of grid power systems using cloud computing, Int. J. Electr. Comput. Eng., 9 (2019).
    [12] X. Zhang, T. Wu, M. Chen, T. Wei, J. Zhou, S. Hu, et al., Energy-aware virtual machine allocation for cloud with resource reservation, J. Syst. Software, 147 (2019), 147-161.
    [13] M. Aldossary, K. Djemame, I. Alzamil, A. Kostopoulos, A. Dimakis, E. Agiatzidou, Energy-aware cost prediction and pricing of virtual machines in cloud computing environments, Future Gener. Comput. Syst., 93 (2019), 442-459. doi: 10.1016/j.future.2018.10.027
    [14] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, N. Kato, A survey on network methodologies for real-time analytics of massive IoT data and open research issues, IEEE Commun. Surv. Tutorials, 19 (2017), 1457-1477. doi: 10.1109/COMST.2017.2694469
    [15] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H Cheng, et al., Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms, Future Gener. Comput. Syst., 86 (2018), 836-850.
    [16] K. Chang, S. Park, H. Kong, W. Kim, Optimizing energy consumption for a performance-aware cloud data center in the public sector, Sustainable Comput. Inf. Syst., 20 (2018), 34-45.
    [17] M. H. Malekloo, N. Kara, M. Barachi, An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments, Sustainable Comput. Inf. Syst., 17 (2018), 9-24.
    [18] M. K. Gupta, A. Jain, T. Amgoth, Power and resource-aware virtual machine placement for IaaS cloud, Sustainable Comput. Inf. Syst., 19 (2018), 52-60.
    [19] Z. Tang, L. Qi, Z. Cheng, K. Li, S. Khan, K. Li, An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment, J. Grid Comput., 14 (2016), 55-74. doi: 10.1007/s10723-015-9334-y
    [20] M. B. Gawali, S. K. Shinde, Task scheduling and resource allocation in cloud computing using a heuristic approach, J. Cloud Comput., 7 (2018), 4.
    [21] Z. Zhu, G. Zhang, M. Li, X. Liu, Evolutionary multi-objective workflow scheduling in cloud, IEEE Trans. Parallel Distrib. Syst., 27 (2016), 1344-1357. doi: 10.1109/TPDS.2015.2446459
    [22] Y. Peng, D. K. Kang, F. Hazemi, C. H. Youn, Energy and QoS aware resource allocation for heterogeneous sustainable cloud datacenters, Opt. Switching Networking, 23 (2017), 225-240. doi: 10.1016/j.osn.2016.02.001
    [23] M. Masdari, F. Salehi, M. Jalali, M. Bidaki, A survey of PSO-based scheduling algorithms in cloud computing, J. Network Syst. Manage., 25 (2017), 122-158. doi: 10.1007/s10922-016-9385-9
    [24] L. Teylo, U. Paula, Y. Frota, D. Oliveira, L. M. A. Drummond, A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds, Future Gener. Comput. Syst., 76 (2017), 1-17. doi: 10.1016/j.future.2017.05.017
    [25] Y. Sharma, W. Si, D. Sun, B. Javadi, Failure-aware energy-efficient VM consolidation in cloud computing systems, Future Gener. Comput. Syst., 94 (2019), 620-633. doi: 10.1016/j.future.2018.11.052
    [26] Q. Zhang, H. Chen, Y. Shen, S. Ma, H. Lu, Optimization of virtual resource management for cloud applications to cope with traffic burst, Future Gener. Comput. Syst., 58 (2016), 42-55. doi: 10.1016/j.future.2015.12.011
    [27] F. J. Baldan, S. Ramirez-Gallego, C. Bergmeir, F. Herrera, J. M. Benitez, A forecasting methodology for workload forecasting in cloud systems, IEEE Trans. Cloud Comput., 6 (2018), 929-941. doi: 10.1109/TCC.2016.2586064
    [28] F. H. Tseng, X. Wang, L. Chou, H. Chao, V. C. M. Leung, Dynamic resource prediction and allocation for cloud data center using the multiobjective genetic algorithm, IEEE Syst. J., 12 (2018), 1688-1699. doi: 10.1109/JSYST.2017.2722476
    [29] M. Aloqaily, A. Boukerche, O. Bouachir, F. Khalid, S. Jangsher, An energy trade framework using smart contracts: Overview and challenges, IEEE Network, 34 (2020), 119-125. doi: 10.1109/MNET.011.1900573
    [30] J. Krzywda, A. Eldin, T. E. Carlson, P. O. Ö stberg, E. Elmroth, Power-performance tradeoffs in data center servers: DVFS, CPU pinning, horizontal, and vertical scaling, Future Gener. Comput. Syst., 81 (2018), 114-128.
    [31] R. B. Uriarte, R. D. Nicola, V. Scoca, F. Tiezzi, Defining and guaranteeing dynamic service levels in clouds, Future Gener. Comput. Syst., 99 (2019), 27-40. doi: 10.1016/j.future.2019.04.001
    [32] M. Soltanshahi, R. Asemi, N. Shafiei, Energy-aware virtual machines allocation by krill herd algorithm in cloud data centers, Heliyon, 5 (2019), e02066.
    [33] G. Kazdaridis, S. Keranidis, P. Symeonidis, P. S. Dias, P. Gonç alves, B. Loureiro, et al., Everun: Enabling power consumption monitoring in underwater networking platforms, in Proceedings of the 11th Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization, (2017), 83-90.
    [34] M. Elhoseny, A. Abdelaziz, A. S. Salama, A. M. Riad, K. Muhammad, A. K. Sangaiahf, A hybrid model of internet of things and cloud computing to manage big data in health services applications, Future Gener. Comput. Syst., 86 (2018), 1383-1394. doi: 10.1016/j.future.2018.03.005
    [35] A. A. Khan, M. Zakarya, R. Buyya, R. Khan, M. Khan, O. Rana, An energy and performance aware consolidation technique for containerized datacenters, IEEE Trans. Cloud Comput., (2019), forthcoming.
    [36] A. A. Beegom, M. S. Rajasree, Integer-pso: a discrete pso algorithm for task scheduling in cloud computing systems, Evol. Intell., 12 (2019), 227-239. doi: 10.1007/s12065-019-00216-7
    [37] V. Balasubramanian, M. Aloqaily, M. Reisslein, An SDN architecture for time sensitive industrial IoT, Comput. Networks, 186 (2021), 107739. doi: 10.1016/j.comnet.2020.107739
    [38] X. Xu, X. Zhang, M. Khan, W. Dou, S. Xue, S. Yu, A balanced virtual machine scheduling method for energy-performance trade-offs in cyber-physical cloud systems, Future Gener. Comput. Syst., 105 (2020), 789-799. doi: 10.1016/j.future.2017.08.057
    [39] A. Hussain, J. Chun, M. Khan, A novel framework towards viable cloud service selection as a service (cssaas) under a fuzzy environment, Future Gener. Comput. Syst., 104 (2020), 74-91. doi: 10.1016/j.future.2019.09.043
    [40] F. De la Prieta, S. Rodríguez, J. M. Corchado, J. Bajo, Infrastructure to simulate intelligent agents in cloud environments, J. Intell. Fuzzy Syst., 28 (2015), 29-41. doi: 10.3233/IFS-141219
    [41] F. De la Prieta, S. Rodríguez-González, P. Chamoso, J. M. Corchado, J. Bajo, Survey of agent-based cloud computing applications, Future Gener. Comput. Syst., 100 (2019), 223-236. doi: 10.1016/j.future.2019.04.037
    [42] F. De la Prieta, S. Rodríguez, J. Bajo, J. M. Corchado, A multiagent system for resource distribution into a Cloud Computing environment, in International Conference on Practical Applications of Agents and Multi-Agent Systems, Springer, Berlin, Heidelberg, (2013), 37-48.
    [43] L. Tseng, Y. Wu, H. Pan, M. Aloqaily, A. Boukerche, Reliable broadcast with trusted nodes: Energy reduction, resilience, and speed, Comput. Networks, 182 (2020), 107486.
    [44] F. Ali, O. Bouachir, O. Ozkasap, M. Aloqaily, SynergyChain: Blockchain-assisted Adaptive Cyberphysical P2P Energy Trading, IEEE Trans. Ind. Inf., (2020), forthcoming.
    [45] F. S. Ali, M. Aloqaily, O. Alfandi, O. Ozkasap, Cyberphysical blockchain-enabled peer-to-peer energy trading, Computer, 53 (2020), 56-65.
    [46] S. Ismaeel, R. Karim, A. Miri, Proactive dynamic virtual-machine consolidation for energy conservation in cloud data centres, J. Cloud Comput., 7 (2018), 10.
    [47] E. Barbierato, M. Gribaudo, M. Iacono, A. Jakóbik, Exploiting CloudSim in a multiformalism modeling approach for cloud based systems, Simul. Modell. Pract. Theory, 93 (2019), 133-147. doi: 10.1016/j.simpat.2018.09.018
    [48] P. Singh, P. Gupta, K. Jyoti, Tasm: technocrat arima and svr model for workload prediction of web applications in cloud, Cluster Comput., 22 (2019), 619-633. doi: 10.1007/s10586-018-2868-6
    [49] M. Mohammadhosseini, A. T. Haghighat, E. Mahdipour, An efficient energy-aware method for virtual machine placement in cloud data centers using the cultural algorithm, J. Supercomput., 75 (2019), 6904-6933. doi: 10.1007/s11227-019-02909-3
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3101) PDF downloads(154) Cited by(7)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog