Research article Special Issues

Modeling flow in embryonic lymphatic vasculature: what is its role in valve development?

  • 1Parts of this work were presented at the 9th Int'l. Bio-Fluid Mechanics & Vascular Mechano-Biology Symposium, 13–16 February 2020, Tucson AZ, and at the Gordon Research Conference on Lymphatics, 1–6 March 2020, Ventura CA
  • Received: 02 October 2020 Accepted: 13 January 2021 Published: 22 January 2021
  • A majority of lymphatic valves tend to form in proximity to vessel junctions, and it is often proposed that disturbed flow at junctions creates oscillating shear stress that leads to accumulation of transcription factors which bring about valvogenesis at these sites. In images of networks of dorsal skin lymphatics from embryonic mice (day E16), we compared simulated fluid flow patterns and observed distributions of the transcription factor Prox1, which is implicated in valve formation. Because of creeping-flow conditions, flow across vessel junctions was not 'disturbed', and within a given vessel, shear stress varied inversely with local conduit width. Prox1 concentration was indeed localised to vessel end-regions, but over three networks was not consistently correlated with the vessel normalised-distance distribution of either fluid shear stress or shear-stress axial gradient. These findings do not support the presently accepted mechanism for the role of flow in valve localisation.

    Citation: Christopher D. Bertram, Bernard O. Ikhimwin, Charlie Macaskill. Modeling flow in embryonic lymphatic vasculature: what is its role in valve development?[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1406-1424. doi: 10.3934/mbe.2021073

    Related Papers:

  • A majority of lymphatic valves tend to form in proximity to vessel junctions, and it is often proposed that disturbed flow at junctions creates oscillating shear stress that leads to accumulation of transcription factors which bring about valvogenesis at these sites. In images of networks of dorsal skin lymphatics from embryonic mice (day E16), we compared simulated fluid flow patterns and observed distributions of the transcription factor Prox1, which is implicated in valve formation. Because of creeping-flow conditions, flow across vessel junctions was not 'disturbed', and within a given vessel, shear stress varied inversely with local conduit width. Prox1 concentration was indeed localised to vessel end-regions, but over three networks was not consistently correlated with the vessel normalised-distance distribution of either fluid shear stress or shear-stress axial gradient. These findings do not support the presently accepted mechanism for the role of flow in valve localisation.



    加载中


    [1] A. Sabine, Y. Agalarov, H. M-E. Hajjami, M. Jaquet, R. Hägerling, C. Pollmann, et al., Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation, Dev. Cell, 22 (2012), 430-445. doi: 10.1016/j.devcel.2011.12.020
    [2] L. Planas-Paz, E. Lammert, Mechanical forces in lymphatic vascular development and disease, Cell. Mol. Life Sci., 70 (2013), 4341-4354. doi: 10.1007/s00018-013-1358-5
    [3] D. Choi, E. Park, E. Jung, B. Cha, S. Lee, J. Yu, et al., Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance, JCI Insight, 4 (2019), e125068-1-e125068-15. doi: 10.1172/jci.insight.125068
    [4] O. F. Kampmeier, The genetic history of the valves in the lymphatic system of man. Am. J. Anat., 40 (1928), 413-457. doi: 10.1002/aja.1000400302
    [5] E. Bazigou, J. T. Wilson, J. E. Moore jr., Primary and secondary lymphatic valve development: molecular, functional and mechanical insights, Microvasc. Res., 96 (2014), 38-45. doi: 10.1016/j.mvr.2014.07.008
    [6] D. T. Sweet, J. M. Jiménez, J. Chang, P. R. Hess, P. Mericko-Ishizuka, J. Fu, et al., Lymph flow regulates collecting lymphatic vessel maturation in vivo, J. Clin. Invest., 125 (2015), 2995-3007. doi: 10.1172/JCI79386
    [7] B. K. Bharadvaj, R. F. Mabon, D. P. Giddens, Steady flow in a model of the human carotid bifurcation. Part I——Flow visualization, J. Biomech., 15 (1982), 349-362. doi: 10.1016/0021-9290(82)90057-4
    [8] B. K. Bharadvaj, R. F. Mabon, D. P. Giddens, Steady flow in a model of the human carotid bifurcation. Part Ⅱ——Laser Doppler anemometer measurements, J. Biomech., 15 (1982), 363-378. doi: 10.1016/0021-9290(82)90058-6
    [9] D. N. Ku, D. P. Giddens, Pulsatile flow in a model carotid bifurcation, Arteriosclerosis, 3 (1983), 31-39. doi: 10.1161/01.ATV.3.1.31
    [10] D. N. Ku, D. P. Giddens, Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation, J. Biomech., 20 (1987), 407-421. doi: 10.1016/0021-9290(87)90048-0
    [11] D. N. Ku, D. P. Giddens, D. J. Phillips, D. E. Strandness jr., Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies, Ultrasound Med. Biol., 11 (1985), 13-26. doi: 10.1016/0301-5629(85)90003-1
    [12] D. N. Ku, D. P. Giddens, C. K. Zarins, S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation, Arteriosclerosis, 5 (1985), 293-302. doi: 10.1161/01.ATV.5.3.293
    [13] C. Hahn, M. A. Schwartz, Mechanotransduction in vascular physiology and atherogenesis, Nat. Rev. Mol. Cell Bio., 10 (2009), 53-62. doi: 10.1038/nrm2596
    [14] J. Kazenwadel, K. L. Betterman, C. E. Chong, P. H. Stokes, Y. K. Lee, G. A. Secker, et al., GATA2 is required for lymphatic vessel valve development and maintenance, J. Clin. Invest., 125 (2015), 2979-2994. doi: 10.1172/JCI78888
    [15] P. R. Norden, A. Sabine, Y. Wang, C. S. Demir, T. Liu, T. V. Petrova, et al., Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation, eLife, 9 (2020), e53814-1-e53814-35. doi: 10.7554/eLife.53814
    [16] C. Norrmén, K. I. Ivanov, J. Cheng, N. Zangger, M. Delorenzi, M. Jaquet, et al., FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1, J. Cell Biol., 185 (2009), 439-457. doi: 10.1083/jcb.200901104
    [17] J. E. Moore jr., C. D. Bertram, Lymphatic system flows, Annu. Rev. Fluid Mech., 50 (2018), 459-482. doi: 10.1146/annurev-fluid-122316-045259
    [18] A. Sabine, T. V. Petrova, Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation. In: Developmental Aspects of the Lymphatic Vascular System (eds. F Kiefer, S Schulte-Merker) Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer-Verlag, Wien, (2014), pp 67-80.doi:10.1007/978-3-7091-1646-3_6
    [19] J. M. Dolan, H. Meng, S. Singh, R. Paluch, J. Kolega, High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment, Ann. Biomed. Eng., 39 (2011), 1620-1631. doi: 10.1007/s10439-011-0267-8
    [20] J. M. Dolan, H. Meng, F. J. Sim, J. Kolega, Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress, Am. J. Physiol. Cell Physiol., 305 (2013), C854-C866. doi: 10.1152/ajpcell.00315.2012
    [21] J. M. Dolan, J. Kolega, H. Meng, High wall shear stress and spatial gradients in vascular pathology: a review, Ann. Biomed. Eng., 41 (2013), 1411-1427. doi: 10.1007/s10439-012-0695-0
    [22] V. N. Surya, E. Michalaki, G. G. Fuller, A. R. Dunn, Lymphatic endothelial cell calcium pulses are sensitive to spatial gradients in wall shear stress, Mol. Biol. Cell, 30 (2019), 923-931. doi: 10.1091/mbc.E18-10-0618
    [23] E. Michalaki, V. N. Surya, G. G. Fuller, A. R. Dunn, Perpendicular alignment of lymphatic endothelial cells in response to spatial gradients in wall shear stress, Commun. Biol., 3 (2020), 57-1-57-9. doi: 10.1038/s42003-019-0732-8
    [24] A. Sabine, M. J. Davis, E. Bovay, T. V. Petrova, Characterization of mouse mesenteric lymphatic valve structure and function. In: Lymphangiogenesis (eds. G Oliver, M Kahn). Methods in Molecular Biology, vol 1846. Humana Press, New York, (2018), pp 97-129.doi:10.1007/978-1-4939-8712-2_7
    [25] M. R. Kelly-Goss, E. R. Winterer, P. C. Stapor, M. Yang, R. S. Sweat, W. B. Stallcup, et al., Cell proliferation along vascular islands during microvascular network growth, BMC Physiol., 12 (2012), 7-1-7-9. doi: 10.1186/1472-6793-12-7
    [26] J. Chiu, S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives, Physiol. Rev., 91 (2011), 327-387. doi: 10.1152/physrev.00047.2009
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3284) PDF downloads(201) Cited by(2)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog