Research article Special Issues

Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation

  • Received: 06 December 2020 Accepted: 18 January 2021 Published: 21 January 2021
  • According to the traditional method of high intensity focused ultrasound (HIFU) treatment, the acoustic and thermal characteristic parameters of constant temperature (room temperature or body temperature) are used to predict thermal lesion. Based on the nonlinear spherical beam equation (SBE) and Pennes bio-heat transfer equation, and a new acoustic-thermal coupled model is proposed. The constant and temperature-dependent acoustic and thermal characteristic parameters are used to predict thermal lesion, and the predicted lesion area are compared with each other. Moreover, the relationship between harmonic amplitude ratio (P2/P1) and thermal lesion is studied. Combined with the known experimental data of acoustic and thermal characteristic parameters of biological tissue and data fitting method, the relationship between acoustic and thermal characteristic parameters and temperature is obtained; and the thermal lesion simulation calculation is carried out by using the acoustic and thermal characteristic parameters under constant temperature and temperature- dependent acoustic and thermal characteristic parameters, respectively. The simulation results show that under the same irradiation condition, the thermal lesion predicted by temperature-dependent acoustic and thermal characteristic parameters is larger than that predicted by traditional method, and the thermal lesion increases with the decrease of harmonic amplitude ratio.

    Citation: Hu Dong, Gang Liu, Xin Tong. Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1340-1351. doi: 10.3934/mbe.2021070

    Related Papers:

  • According to the traditional method of high intensity focused ultrasound (HIFU) treatment, the acoustic and thermal characteristic parameters of constant temperature (room temperature or body temperature) are used to predict thermal lesion. Based on the nonlinear spherical beam equation (SBE) and Pennes bio-heat transfer equation, and a new acoustic-thermal coupled model is proposed. The constant and temperature-dependent acoustic and thermal characteristic parameters are used to predict thermal lesion, and the predicted lesion area are compared with each other. Moreover, the relationship between harmonic amplitude ratio (P2/P1) and thermal lesion is studied. Combined with the known experimental data of acoustic and thermal characteristic parameters of biological tissue and data fitting method, the relationship between acoustic and thermal characteristic parameters and temperature is obtained; and the thermal lesion simulation calculation is carried out by using the acoustic and thermal characteristic parameters under constant temperature and temperature- dependent acoustic and thermal characteristic parameters, respectively. The simulation results show that under the same irradiation condition, the thermal lesion predicted by temperature-dependent acoustic and thermal characteristic parameters is larger than that predicted by traditional method, and the thermal lesion increases with the decrease of harmonic amplitude ratio.



    加载中


    [1] M. Marinova, M. Rauch, H. H. Schild, H. M. Strunk, Novel non-invasive treatment with high-intensity focused ultrasound (HIFU), Ultraschall Med., 37 (2016), 46-55.
    [2] R. Kovatcheva, J. Vlahov, J. Stoinov, F. Lacoste, C. Ortuno, K. Zaletel, US-guided high-intensity focused ultrasound as a promising non-invasive method for treatment of primary hyperparathyroidism, Eur. Radiol., 24 (2014), 2052-2058.
    [3] S. M. Huang, H. L. Liu, D. W. Li, M. L. Li, Ultrasonic Nakagami imaging of high-intensity focused ultrasound-induced thermal lesions in porcine livers: ex vivo study, Ultrason. imaging, 40 (2018), 310-324.
    [4] C. Liu, Y. Zhou, Detection of gaps between high-intensity focused ultrasound (HIFU)-induced lesions using transient axial shear strain elastograms, Med. Phys., 45 (2018), 3831-3847.
    [5] D. Zhang, S. Zhang, M. Wan, S. Wang, A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection, Ultrasonics, 51 (2011), 857-869.
    [6] J. Zhang, S. Chauhan, Neural network methodology for real-time modelling of bio-heat transfer during thermo-therapeutic applications, Artif. Intell. Med., 101 (2019), 101728.
    [7] J. Zhang, N. D. Bui, W. Cheung, S. K. Roberts, S. Chauhan, Fast computation of desired thermal dose: Application to focused ultrasound-induced lesion planning, Numer. Heat Transfer, Part A, 77 (2020), 666-682.
    [8] Q. Tan, X. Zou, H. Dong, Y. Ding, X. Zhao, Influence of blood vessels on temperature during high-intensity focused ultrasound hyperthermia based on the thermal wave model of bioheat transfer, Adv. Condens. Matter Phys., 2018 (2018), 1-10.
    [9] C. W. Huang, M. K. Sun, B. T. Chen, J. Shieh, C. S. Chen, W. S. Chen, Simulation of thermal ablation by high-intensity focused ultrasound with temperature-dependent properties, Ultrason. Sonochem., 27 (2015), 456-465.
    [10] T. Kamakura, T. Ishiwata, K. Matsuda, A new theoretical approach to the analysis of nonlinear sound beams using the oblate spheroidal coordinate system, J. Acoust. Soc. Am., 105 (1999), 3083-3086.
    [11] S. H. Chang, R. Cao, Y. B. Zhang, P. G. Wang, S. J. Wu, Y. H. Qian, et al., Treatable focal region modulated by double excitation signal superimposition to realize platform temperature distribution during transcranial brain tumor therapy with high-intensity focused ultrasound, Chinese Phys. B, 27 (2018), 078701.
    [12] S. A. Sapareto, W. C. Dewey, Thermal dose determination in cancer therapy, Int. J. Radiat. Oncol., 10 (1984), 787-800.
    [13] M. J. Choi, S. R. Guntur, J. M. Lee, D. G. Paeng, K. I. Lee, A. Coleman, Changes in ultrasonic properties of liver tissue in vitro during heating-cooling cycle concomitant with thermal coagulation, Ultrasound Med. Biol., 37 (2011), 2000-2012.
    [14] S. R. Guntur, K. I. Lee, D. G. Paeng, A. J. Coleman, M. J. Choi, Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation, Ultrasound Med. Biol., 39 (2013), 1771-1784.
    [15] A. Ciubara, D. Dorohoi, F. Severcan, D. Creanga, Quantitative model of ultrasound propagation in biological media, Univ. Politeh. Bucharest Sci. Bull., Series A, 76 (2014), 221-226.
    [16] S. R. Guntur, M. J. Choi, Influence of temperature-dependent thermal parameters on temperature elevation of tissue exposed to high-intensity focused ultrasound: numerical simulation, Ultrasound Med. Biol., 41 (2015), 806-813.
    [17] A. Bhattacharya, R. L. Mahajan, Temperature dependence of thermal conductivity of biological tissues, Physiol. Meas., 24 (2003), 769-783.
    [18] C. W. Connor, K. Hynynen, Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study, Phys. Med. Biol., 47 (2002), 1911-1928.
    [19] X. Liu, X. Gong, C. Yin, J. Li, D. Zhang, Noninvasive estimation of temperature elevations in biological tissues using acoustic nonlinearity parameter imaging, Ultrasound Med. Biol., 34 (2008), 414-424.
    [20] R. T. Beyer, Parameter of nonlinearity in fluids, J. Acoust. Soc. Am., 32 (1960), 719-721.
    [21] J. N Tjo/tta, S. Tjo/tta, E. H. Vefring, Effects of focusing on the nonlinear interaction between two collinear finite amplitude sound beams, J. Acoust. Soc. Am., 89 (1991), 1017-1027.
    [22] I. M. Hallaj, R. O. Cleveland, FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound, J. Acoust. Soc. Am., 105 (1999), L7-L12.
    [23] T. Kamakura, T. Ishiwata, K. Matsuda, Model equation for strongly focused finite-amplitude sound beams, J. Acoust. Soc. Am., 107 (2000), 3035-3046.
    [24] D. Yang, Z. Ni, Y. Yang, G. Xu, J. Tu, X. Guo, P. Huang, D. Zhang, The enhanced HIFU-induced thermal effect via magnetic ultrasound contrast agent microbubbles, Ultrason. Sonochem., 49 (2018), 111-117.
    [25] E. J. Jackson, C. C. Coussios, R. O. Cleveland, Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation, Phys. Med. Biol., 59 (2014), 3223-3238.
    [26] J. Zhang, J. Hills, Y. Zhong, B. Shirinzadeh, J. Smith, G. Gu, Temperature-dependent thermomechanical modeling of soft tissue deformation, J. Mech. Med. Biol., 18 (2019), 1840021.
    [27] J. Zhang, R. J. Lay, S. K. Roberts, S. Chauhan, Towards real-time finite-strain anisotropic thermo-visco-elastodynamic analysis of soft tissues for thermal ablative therapy, Comput. Methods Programs Biomed., 198 (2020), 105789.
    [28] J. Zhang, S. Chauhan, Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation, Comput. Methods Programs Biomed., 187 (2020), 105244.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3057) PDF downloads(126) Cited by(3)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog