Research article Special Issues

Performance of protein-ligand docking with CDK4/6 inhibitors: a case study

  • Received: 03 September 2020 Accepted: 02 December 2020 Published: 08 December 2020
  • It is widely believed that tertiary protein-ligand interactions are essential in determining protein function. Currently, the structure sampling and scoring function in traditional docking methods still have limitations. Therefore, new methods for protein-ligand docking are desirable. The accurate docking can speed up the early-stage development of new drugs. Here we present a multi-source information-based protein-ligand docking approach (pmDock). In the CDK4/6 inhibitor case study, pmDock produces a substantial accuracy increases between the predicted geometry centers of ligands and experiments compared to AutoDock and SwissDock alone. Also, pmDock improves predictions for critical binding sites and captures more tertiary binding interactions. Our results demonstrate that pmDock is a reliable docking method for accurate protein-ligand prediction.

    Citation: Linlu Song, Shangbo Ning, Jinxuan Hou, Yunjie Zhao. Performance of protein-ligand docking with CDK4/6 inhibitors: a case study[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 456-470. doi: 10.3934/mbe.2021025

    Related Papers:

  • It is widely believed that tertiary protein-ligand interactions are essential in determining protein function. Currently, the structure sampling and scoring function in traditional docking methods still have limitations. Therefore, new methods for protein-ligand docking are desirable. The accurate docking can speed up the early-stage development of new drugs. Here we present a multi-source information-based protein-ligand docking approach (pmDock). In the CDK4/6 inhibitor case study, pmDock produces a substantial accuracy increases between the predicted geometry centers of ligands and experiments compared to AutoDock and SwissDock alone. Also, pmDock improves predictions for critical binding sites and captures more tertiary binding interactions. Our results demonstrate that pmDock is a reliable docking method for accurate protein-ligand prediction.


    加载中


    [1] S. Pernas, S. M. Tolaney, E. P. Winer, S. Goel, CDK4/6 inhibition in breast cancer: current practice and future directions, Ther. Adv. Med. Oncol., 10 (2018), 1758835918786451.
    [2] H. Xu, S. Yu, Q. Liu, X. Yuan, S. Mani, R. G. Pestell, et al., Recent advances of highly selective CDK4/6 inhibitors in breast cancer, J. Hematol. Oncol., 10 (2017), 97. doi: 10.1186/s13045-017-0467-2
    [3] S. F. Dowdy, M. Kaulich, Abstract 1304: Cyclin D:Cdk4/6 activates RB by mono-phosphorylation during early G1 phase, Cancer Res., 74 (2014), 1304–1304.
    [4] A. N. Omstead, D. Matsui, J. E. Kosovec, S. A. Martin, B. A. Jobe, Antitumor efficacy of CDK 4/6 dual inhibitor, abemaciclib, in an esophageal adenocarcinoma model, J. Clin. Oncol., 35 (2017), e15598–e15598.
    [5] M. Tutone, A. M. Almerico, Recent advances on CDK inhibitors: An insight by means of in silico methods, Eur. J. Med. Chem., 142 (2017), 300–315. doi: 10.1016/j.ejmech.2017.07.067
    [6] S. Müller, A. Chaikuad, N. S. Gray, S. Knapp, The ins and outs of selective kinase inhibitor development, Nat. Chem. Biol., 11 (2015), 818–821. doi: 10.1038/nchembio.1938
    [7] P. Ayaz, D. Andres, D. A. Kwiatkowski, C. C. Kolbe, P. Lienau, G. Siemeister, et al., Conformational adaption may explain the slow dissociation kinetics of roniciclib (BAY 1000394), a yype I CDK inhibitor with kinetic selectivity for CDK2 and CDK9, ACS Chem. Biol., (2016), acschembio.6b00074.
    [8] T. Dale, P. A. Clarke, C. Esdar, D. Waalboer, O. Adeniji-Popoola, M. J. Ortiz-Ruiz, et al., A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease, Nat. Chem. Biol., 2015.
    [9] M. Schreuer, V. Kruse, Y. Jansen, B. Neyns, COMBI-rechallenge: a phase II clinical trial on dabrafenib plus trametinib in BRAFV600-mutant melanoma patients who previously experienced progression on BRAF(+MEK)-inhibition, Ann. Oncolo., 27 (2016).
    [10] R. B. Corcoran, G. S. Falchook, J. R. Infante, O. Hamid, W. A. Messersmith, E. L. Kwak, et al., BRAF V600 mutant colorectal cancer (CRC) expansion cohort from the phase I/II clinical trial of BRAF inhibitor dabrafenib (GSK2118436) plus MEK inhibitor trametinib (GSK1120212), J. Clin. Oncol., 2012.
    [11] T. Wang, Z. Yang, Y. Zhang, W. Yan, F. Wang, L. He, et al., Discovery of novel CDK8 inhibitors using multiple crystal structures in docking-based virtual screening, Eur. J. Med. Chem., 129 (2017), 275–286. doi: 10.1016/j.ejmech.2017.02.020
    [12] S. E. Dixon-Clarke, S. N. Shehata, T. Krojer, T. D. Sharpe, F. Von Delft, K. Sakamoto, et al., Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16, Biochem. J., 474 (2017), 699–713. doi: 10.1042/BCJ20160941
    [13] N. Canela, M. Orzaez, R. Fucho, F. Mateo, R. Gutierrez, A. Pineda-Lucena, et al., Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A, J. Biol. Chem., 281 (2006), 35942–35953. doi: 10.1074/jbc.M603511200
    [14] Orzáez, Guevara, Sancho, Pérez-Payá, Intrinsic caspase-8 activation mediates sensitization of erlotinib-resistant tumor cells to erlotinib/cell-cycle inhibitors combination treatment, Cell Death Dis., 2012.
    [15] R. S. Finn, A. Aleshin, D. J. Slamon, Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers, Breast Cancer Res.: BCR, 18 (2016), 17. doi: 10.1186/s13058-015-0661-5
    [16] T. Otto, P. Sicinski, Cell cycle proteins as promising targets in cancer therapy, Nat. Rev. Cancer, 17 (2017), 93–115. doi: 10.1038/nrc.2016.138
    [17] L. Spring, A. Bardia, S. Modi, Targeting the cyclin D-cyclin-dependent kinase (CDK) 4/6-retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions, Discovery Med., 21 (2016), 65.
    [18] M. W. Landis, B. S. Pawlyk, T. Li, P. Sicinski, P. W. Hinds, Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis, Cancer Cell, 9 (2006), 13–22. doi: 10.1016/j.ccr.2005.12.019
    [19] B. Laderian, T. Fojo, CDK4/6 inhibition as a therapeutic strategy in breast cancer: palbociclib, ribociclib, and abemaciclib, Semin. Oncol., (2018), S0093775418300812.
    [20] S. Parylo, A. Vennepureddy, V. Dhar, P. Patibandla, A. Sokoloff, Role of cyclin-dependent kinase 4/6 inhibitors in the current and future eras of cancer treatment, J. Oncol. Pharm. Pract., (2018), 107815521877090.
    [21] A. Patnaik, L. S. Rosen, S. M. Tolaney, A. W. Tolcher, J. W. Goldman, L. Gandhi, et al., Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non–small cell lung cancer, and other solid tumors, Cancer Discovery, (2016), 740–753.
    [22] H. Wang, K. Wang, Z. Guan, Y. Jian, Y. Jia, F. Kashanchi, et al., Computational study of non-catalytic T-loop pocket on CDK proteins for drug development, Chin. Phys. B, 2017.
    [23] H. W. Wang, Z. Y. Guan, J. D. Qiu, Y. Jia, C. Zeng, Y. J. Zhao, Novel method to identify group-specific non-catalytic pockets of human kinome for drug design, RSC Adv., 4 (2020).
    [24] Y. Zhao, H. Chen, C. Du, Y. Jian, H. Li, Y. Xiao, et al., Design of tat-activated CDK9 inhibitor, Int. J. Peptide Res. Therapeutics, 25 (2018), 807–817.
    [25] A. M. Almerico, M. Tutone, A. Lauria, 3D-QSAR pharmacophore modeling and in silico screening of new Bcl-xl inhibitors, Eur. J. Med. Chem., 45 (2010), 4774–4782. doi: 10.1016/j.ejmech.2010.07.042
    [26] A. M. Almerico, M. Tutone, A. Lauria, Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors, J. Mol. Model., 18 (2012), 2885–2895. doi: 10.1007/s00894-011-1304-0
    [27] Z. Shentu, M. A. Hasan, C. Bystroff, M. J. Zaki, Context shapes: Efficient complementary shape matching for protein-protein docking, Proteins-Struct. Funct. Bioinformatics, 70 (2010), 1056–1073.
    [28] D. W. Ritchie, Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2, Proteins: Struct., Funct., Bioinformatics, 2003.
    [29] K. Wiehe, B. Pierce, J. Mintseris, W. W. Tong, R. Anderson, R. Chen, et al., ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5, Proteins-Struct. Funct. Bioinformatics, 60 (2005), 207–213. doi: 10.1002/prot.20559
    [30] A. Caflisch, P. Niederer, M. Anliker, Monte Carlo docking of oligopeptides to proteins, Proteins-Struct. Funct. Bioinformatics, 13 (2010), 223–230.
    [31] T. N. Hart, R. J. Read, A multiple-start Monte Carlo docking method, J. Mol. Graphics, 13 (2010), 206–222.
    [32] P. Reigan, W. Guo, D. Siegel, D. Ross, Molecular docking studies investigating the interaction of a series of benzoquinone ansamycin Hsp90 inhibitors with NAD(P)H: quinone oxidoreductase 1 (NQO1), Cancer Res., 66 (2006), 457–457.
    [33] C. M. Venkatachalam, X. Jiang, T. Oldfield, M. Waldman, LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites, J. Mol. Graphics Model., 21 (2003), 289–307. doi: 10.1016/S1093-3263(02)00164-X
    [34] L. Kang, H. L. Li, H. L. Jiang, X. C. Wang, An improved adaptive genetic algorithm for protein–ligand docking, J. Comput. Aided Mol. Des., 23 (2009), 1–12.
    [35] F. Sterberg, G. M. Morris, M. F. Sanner, A. J. Olson, D. S. Goodsell, Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock, Protns Struct. Funct. Bioinformatics, 46 (2002), 34–40. doi: 10.1002/prot.10028
    [36] G. Jones, P. Willett, R. C. Glen, A. R. Leach, R. Taylor, Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol., 267 (1997), 727–748. doi: 10.1006/jmbi.1996.0897
    [37] H. Jing, X. Zhou, X. Dong, J. Cao, H. Zhu, J. Lou, et al., Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells, Cancer Lett., 294 (2010), 167–177. doi: 10.1016/j.canlet.2010.01.035
    [38] H. Li, C. Li, C. Gui, X. Luo, K. Chen, J. Shen, et al., GAsDock: a new approach for rapid flexible docking based on an improved multi-population genetic algorithm, Bioorg. Med. Chem. Lett., 14 (2004), 4671–4676. doi: 10.1016/j.bmcl.2004.06.091
    [39] G. Culletta, A. M. Almerico, M. Tutone, Comparing molecular dynamics-derived pharmacophore models with docking: a study on CDK-2 inhibitors, Chem. Data Collect., 2020.
    [40] P. N. Sekhar, Software for molecular docking: a review, Biophys. Rev., 9 (2016), 91–102.
    [41] Z. Bikadi, E. Hazai, Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock, J. Cheminformatics, 1 (2009), 1–16. doi: 10.1186/1758-2946-1-1
    [42] A. Grosdidier, V. Zoete, O. Michielin, SwissDock, a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res., 39 (2011), W270–W277.
    [43] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, A. J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 30 (2010), 2785–2791.
    [44] A. Grosdidier, V. Zoete, O. Michielin, Fast docking using the CHARMM force field with EADock DSS, J. Comput. Chem., 32 (2011), 2149–2159. doi: 10.1002/jcc.21797
    [45] R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, A semi-empirical free energy force field with charge-based desolvation, J. Comput. Chem., 28 (2010), 1145–1152.
    [46] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, et al., A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 106 (1984), 765–784. doi: 10.1021/ja00315a051
    [47] P. J. Goodford, A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, J. Med. Chem., 28 (1985), 849–857. doi: 10.1021/jm00145a002
    [48] E. L. Mehler, T. Solmajer, Electrostatic effects in proteins: comparison of dielectric and charge models, Protn. Eng., (1991), 903–910.
    [49] G. M. Verkhivker, D. Bouzida, D. K. Gehlhaar, P. A. Rejto, S. Arthurs, A. B. Colson, et al., Deciphering common failures in molecular docking of ligand-protein complexes, J. Comput.-Aided Mol. Des., 14 (2000), 731–751. doi: 10.1023/A:1008158231558
    [50] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4 (2010), 187–217.
    [51] A. Grosdidier, V. Zoete, O. Michielin, Fast docking using the CHARMM force field with EADock DSS, J. Comput. Chem., 32 (2011), 2149–2159. doi: 10.1002/jcc.21797
    [52] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem., 91 (1987), 6269–6271. doi: 10.1021/j100308a038
    [53] B. R. R. Brooks, C. L. B. Brooks, A. D. Mackerell, L. Nilsson, M. J. Karplus, CHARMM: the biomolecular simulation program, J. Comput. Chem., 30 (2009), 1545. doi: 10.1002/jcc.21287
    [54] J. A. Hartigan, M. A. Wong, A K-Means clustering algorithm, Appl. Stats., 28 (1979).
    [55] A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett., 31 (2010), 651–666. doi: 10.1016/j.patrec.2009.09.011
    [56] A. B. Chorin, G. Masrati, A. Kessel, A. Narunsky, ConSurf‐DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins, Protein Sci., 29 (2020).
    [57] O. Goldenberg, E. Erez, G. Nimrod, N. Ben-Tal, The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures, Nucleic Acids Res., 37 (2009), D323–D327. doi: 10.1093/nar/gkn822
    [58] M. Jaina, R. D. Finn, S. R. Eddy, B. Alex, P. Marco, Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions, Nucleic Acids Res., 41 (2013), e121–e121. doi: 10.1093/nar/gkt263
    [59] K. Kazutaka, D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30 (2013), 772–780. doi: 10.1093/molbev/mst010
    [60] P. Tal, R. E. Bell, M. Itay, G. Fabian, B. T. Nir, Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues, Bioinformatics, (2002), S71.
    [61] P. Chen, N. V. Lee, W. Hu, M. Xu, B. W. Murray, Spectrum and degree of CDK drug interactions predicts clinical performance, Mol. Cancer Therapeutics, 15 (2016), 2273. doi: 10.1158/1535-7163.MCT-16-0300
    [62] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, G. R. Hutchison, Open babel: an open chemical toolbox, J. Cheminformatics, 3 (2011), 33. doi: 10.1186/1758-2946-3-33
    [63] H. Wang, J. Qiu, H. Liu, Y. Xu, Y. Jia, Y. Zhao, HKPocket: human kinase pocket database for drug design, BMC Bioinformatics, 20 (2019), 617. doi: 10.1186/s12859-019-3254-y
    [64] K. Wang, Y. Jian, H. Wang, C. Zeng, Y. Zhao, RBind: computational network method to predict RNA binding sites, Bioinformatics, 34 (2018).
    [65] Y. Jian, X. Wang, J. Qiu, H. Wang, Z. Liu, Y. Zhao, C. Zeng, DIRECT: RNA contact predictions by integrating structural patterns, BMC Bioinformatics, 20 (2019), 497. doi: 10.1186/s12859-019-3099-4
    [66] H. Wang, Y. Zhao, RBinds: a user-friendly server for RNA binding site prediction, Comput. Struct. Biotechnol. J., 18 (2020), 3762–3765. doi: 10.1016/j.csbj.2020.10.043
    [67] H. Wang, Y. Zhao, Methods and applications of RNA contact prediction, Chin. Phys. B, 29 (2020), 108708. doi: 10.1088/1674-1056/abb7f3
    [68] K. Rascon, G. Flajc, C. De Angelis, X. Liu, M. V. Trivedi, E. Ekinci, Ribociclib in HR+/HER2- advanced or metastatic breast cancer patients, Ann. Pharmacotherapy, 2019.
    [69] R. J. Cersosimo, Cyclin-dependent kinase 4/6 inhibitors for the management of advanced or metastatic breast cancer in women, (2019), 1183–1202.
    [70] A. F. D. Groot, C. J. Kuijpers, J. R. Kroep, CDK4/6 inhibition in early and metastatic breast cancer: A review, Cancer Treatment Rev., 60 (2017), 130–138. doi: 10.1016/j.ctrv.2017.09.003
    [71] M. Poratti, G. Marzaro, Third-generation CDK inhibitors: A review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib, Eur. J. Med. Chem., 172 (2019), 143–153. doi: 10.1016/j.ejmech.2019.03.064
  • mbe-18-01-025-supplementary.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4464) PDF downloads(399) Cited by(2)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog