Citation: Anissa Guillemin, Michael P. H. Stumpf. Non-equilibrium statistical physics, transitory epigenetic landscapes, and cell fate decision dynamics[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7916-7930. doi: 10.3934/mbe.2020402
[1] | P. Nurse, J. Hayles, The cell in an era of systems biology, Cell, 144 (2011), 850-854, doi: 10.1016/j.cell.2011.02.045 |
[2] | P. Smadbeck, M. P. H. Stumpf, Coalescent models for developmental biology and the spatiotemporal dynamics of growing tissues, J. R. Soc., Interface/R. Soc., 13 (2016), 20160112. doi: 10.1098/rsif.2016.0112 |
[3] | J. Briscoe, S. Small, Morphogen rules: design principles of gradient-mediated embryo patterning, Development, 142 (2015), 3996-4009. doi: 10.1242/dev.129452 |
[4] | D. S. Goodsell, The Machinery of Life, Copernicus Books, 2009. |
[5] | J. Jost, Dynamical Systems Examples of Complex Behaviour, Springer, 2005. |
[6] | P. D. W. Kirk, D. M. Y. Rolando, A. L. MacLean, M. P. H. Stumpf, Conditional random matrix ensembles and the stability of dynamical systems, New J. Phys., 17 (2015), 083025. doi: 10.1088/1367-2630/17/8/083025 |
[7] | C. Kwon, P. Ao, D. J. Thouless, Structure of stochastic dynamics near fixed points, Proc. Nat. Acad. Sci., 102 (2005), 13029-13033. doi: 10.1073/pnas.0506347102 |
[8] | H. Qian, Cellular biology in terms of stochastic nonlinear biochemical dynamics, J. Stat. Phys., 141 (2010), 990-1013. doi: 10.1007/s10955-010-0093-7 |
[9] | I. Glauche, L. Thielecke, I. Roeder, Cellular aging leads to functional heterogeneity of hematopoietic stem cells: a modeling perspective, Aging Cell, 10 (2011), 457-465. doi: 10.1111/j.1474-9726.2011.00692.x |
[10] | V. Chickarmane, V. Olariu, C. Peterson, Probing the role of stochasticity in a model of the embryonic stem cell: heterogeneous gene expression and reprogramming efficiency, BMC Syst. Biol. 6 (2012), 98. doi: 10.1186/1752-0509-6-98 |
[11] | U. Herbach, Modélisation stochastique de l'expression des gènes et inf erence de réseaux de régulation, 184. |
[12] | B. Zhang, P. G. Wolynes, Stem cell differentiation as a many-body problem, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 10185-10190. doi: 10.1073/pnas.1408561111 |
[13] | J. Lei, S. A. Levin, Q. Nie, Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), E880-887. doi: 10.1073/pnas.1324267111 |
[14] | A. L. MacLean, T. Hong, Q. Nie, Exploring intermediate cell states through the lens of single cells, Curr. Opin. Syst. Biol., 9 (2018), 32-41. doi: 10.1016/j.coisb.2018.02.009 |
[15] | N. P. Gao, O. Gandrillon, A. Páldi, U. Herbach, R. Gunawan, Universality of cell differentiation trajectories revealed by a reconstruction of transcriptional uncertainty landscapes from single-cell transcriptomic data, preprint, bioRxiv, 2020. Available: http://biorxiv.org/lookup/doi/10.1101/2020.04.23.056069. |
[16] | N. Moris, S. Edri, D. Seyres, R. Kulkarni, A. F. Domingues, T. Balayo, et al., Histone acetyltransferase KAT2A stabilizes pluripotency with control of transcriptional heterogeneity: transcriptional heterogeneity and fate transitions, Stem Cells, 36 (2018), 1828-1838. doi: 10.1002/stem.2919 |
[17] | A. Guillemin, R. Duchesne, F. Crauste, S. Gonin-Giraud, O. Gandrillon, Drugs modulating stochastic gene expression affect the erythroid differentiation process, PLOS ONE, 14 (2019), e0225166. doi: 10.1371/journal.pone.0225166 |
[18] | A. Coulon, C. C. Chow, R. H. Singer, D. R. Larson, Eukaryotic transcriptional dynamics: from single molecules to cell populations, Nat. Rev. Genet., 14 (2013), 572-584. doi: 10.1038/nrg3484 |
[19] | Z. Singer, J. Yong, J. Tischler, J. Hackett, A. Altinok, M. Surani, et al., Dynamic heterogeneity and DNA methylation in embryonic stem cells, Mol. Cell, 55 (2014), 319-331. doi: 10.1016/j.molcel.2014.06.029 |
[20] | K. Bystricky, Chromosome dynamics and folding in eukaryotes: Insights from live cell microscopy, FEBS Lett., 589 (2015), 3014-3022. doi: 10.1016/j.febslet.2015.07.012 |
[21] | P. Dong, Z. Liu, Shaping development by stochasticity and dynamics in gene regulation, Open Biol., 7 (2017), 170030. doi: 10.1098/rsob.170030 |
[22] | A. C. Babtie, P. D. W. Kirk, M. P. H. Stumpf, Topological sensitivity analysis for systems biology., Proc. Natl. Acad. Sci. U.S.A, 111 (2014), 18507-18512. |
[23] | P. S. Stumpf, R. C. Smith, M. Lenz, A. Schuppert, F.-J. Müller, A. Babtie, et al., Stem cell differentiation as a non-Markov stochastic process, Cell Syst., 5 (2017), 268-282.e7. doi: 10.1016/j.cels.2017.08.009 |
[24] | E. Clark, M. Akam, Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network, eLife, 5 (2016), e18215. doi: 10.7554/eLife.18215 |
[25] | R. Perez-Carrasco, P. Guerrero, J. Briscoe, K. M. Page, Intrinsic noise profoundly alters the dynamics and steady state of morphogen-controlled bistable genetic switches, PLoS Comput. Biol., 12 (2016), e1005154. doi: 10.1371/journal.pcbi.1005154 |
[26] | P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney, S. S. Lee, Turing's model for biological pattern formation and the robustness problem, Interface Focus, 2 (2012), 487-496. doi: 10.1098/rsfs.2011.0113 |
[27] | N. S. Scholes, D. Schnoerr, M. Isalan, M. P. Stumpf, A comprehensive network atlas reveals that turing patterns are common but not robust, Cell Syst., 9 (2019), 243-257.e4. doi: 10.1016/j.cels.2019.07.007 |
[28] | R. Thom, Structural Stability and Morphogenesis: an Outline of a General Theory of Models, Addison-Wesley Publishing, Reading, Massachusetts, 1989. |
[29] | M. Demazure, Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear Problems, Universitext, Springer, Berlin, 2000. |
[30] | P. François, L. Jutras-Dubé, Landscape, bifurcations, geometry for development, Curr. Opin. Syst. Biol., 11 (2018), 129-136. doi: 10.1016/j.coisb.2018.06.001 |
[31] | E. C. Zeeman, Stability of dynamical systems, Nonlinearity, 1 (1999), 115. |
[32] | C. H. Waddington, The Strategy of the Genes, Allen & Unwin, 1957. |
[33] | N. Moris, C. Pina, A. M. Arias, Transition states and cell fate decisions in epigenetic landscapes, Nat. Rev. Genet., 17 (2016), 693-703. doi: 10.1038/nrg.2016.98 |
[34] | S. Huang, Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules, PLoS Biol., 8 (2010), e1000380. doi: 10.1371/journal.pbio.1000380 |
[35] | J. X. Zhou, M. D. S. Aliyu, E. Aurell, S. Huang, Quasi-potential landscape in complex multi-stable systems, J. R. Soc. Interface, 9 (2012), 3539-3553. doi: 10.1098/rsif.2012.0434 |
[36] | R. D. Brackston, E. Lakatos, M. P. H. Stumpf, Transition state characteristics during cell differentiation, PLoS Comput. Biol., 14 (2018), e1006405. doi: 10.1371/journal.pcbi.1006405 |
[37] | R. D. Brackston, A. Wynn, M. P. H. Stumpf, Construction of quasipotentials for stochastic dynamical systems: An optimization approach, Phys. Rev. E, 98 (2018), 022136. |
[38] | J. Wang, L. Xu, E. Wang, Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations, Proc. Natl. Acad. Sci., 105 (2008), 12271-12276. doi: 10.1073/pnas.0800579105 |
[39] | G. Anderson, B. Verd, J. Jaeger, Drawing to extend waddington's epigenetic landscape, Leonardo, 53 (2020), 256-262. doi: 10.1162/leon_a_01738 |
[40] | J. Weber, The morse-witten complex via dynamical systems, Expositiones Math., 24 (2006), 127-159. doi: 10.1016/j.exmath.2005.09.001 |
[41] | S. Huang, Non-genetic heterogeneity of cells in development: more than just noise, Development, 136 (2009), 3853-3862. doi: 10.1242/dev.035139 |
[42] | E. Ventre, T. Espinasse, C. E. Bréhier, V. Calvez, T. Lepoutre, O. Gandrillon, Reduction of a stochastic model of gene expression: Lagrangian dynamics gives access to basins of attraction as cell types and metastabilty, preprint, bioRxiv. |
[43] | J. Jost, Riemannian Geometry and Geometric Analysis, 6th edition, Universitext, Springer, Heidelberg, 2011. |
[44] | H. P. de Vladar, N. H. Barton, The contribution of statistical physics to evolutionary biology, Trends Ecol. Evol., 26 (2011), 424-432. doi: 10.1016/j.tree.2011.04.002 |
[45] | S. S. Mc Mahon, O. Lenive, S. Filippi, M. P. H. Stumpf, Information processing by simple molecular motifs and susceptibility to noise, J. R. Soc. Interface, 12 (2015), 20150597. doi: 10.1098/rsif.2015.0597 |
[46] | T. Jetka, K. Nienałtowski, S. Filippi, M. P. H. Stumpf, M. Komorowski, An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling, Nat. Commun., 9 (2018), 4591. doi: 10.1038/s41467-018-07085-1 |
[47] | P. Szymańska-Rożek, D. Villamaina, J. Miȩkisz, A. M. Walczak, Dissipation in non-steady state regulatory circuits, Entropy, 21 (2019), e21121212. |
[48] | M. Sasai, P. G. Wolynes, Stochastic gene expression as a many-body problem, Proc. Natl. Acad. Sci., 100 (2003), 2374-2379. doi: 10.1073/pnas.2627987100 |
[49] | A. Benecke, Gene regulatory network inference using out of equilibrium statistical mechanics, HFSP J., 2 (2010), 183-188. |
[50] | J. Garcia-Ojalvo, A. Martinez Arias, Towards a statistical mechanics of cell fate decisions, Curr. Opin. Genet. Dev., 22 (2012), 619-626. |
[51] | B. D. MacArthur, I. R. Lemischka, Statistical mechanics of pluripotency, Cell, 154 (2013), 484-489. doi: 10.1016/j.cell.2013.07.024 |
[52] | D. Chandler, Introduction To Modern Statistical Mechanics, Oxford University Press, 1987. |
[53] | P. Attard, Non-Equilibrium Thermodynamics And Statistical Mechanics: Foundations And Applications, Oxford Univiversity Press, 2012. |
[54] | S. Muñoz Descalzo, A. Martinez Arias, The structure of Wntch signalling and the resolution of transition states in development, Semin. Cell Dev. Biol., 23 (2012), 443-449. |
[55] | V. Bergen, M. Lange, S. Peidli, F. A. Wolf, F. J. Theis, Generalizing RNA velocity to transient cell states through dynamical modeling, Nat. Biotechnol., 14 (2020), 1-7. |
[56] | T. Hastie, R. Tibshirani, J. Friedman, The Elements Of Statistical Learning: Data Mining, Inference, And Prediction, Springer, 2009. |
[57] | S. Gao, G. V. Steeg, A. Galstyan, Efficient estimation of mutual information for strongly dependent variables, in Artificial Intelligence and Statistics, (2015), 277-286. |
[58] | T. W. Thorne, M. P. H. Stumpf, M. P. H. Stumpf, Inference of temporally varying Bayesian networks, Bioinformatics, 28 (2012), 3298-3305. doi: 10.1093/bioinformatics/bts614 |
[59] | S. S. Mc Mahon, A. Sim, S. Filippi, R. Johnson, J. Liepe, D. Smith, et al., Information theory and signal transduction systems: from molecular information processing to network inference, Semin. Cell Dev. Biol., 35 (2014), 98-108. doi: 10.1016/j.semcdb.2014.06.011 |
[60] | T. E. Chan, M. P. H. Stumpf, A. C. Babtie, Gene regulatory network inference from single-cell data using multivariate information measures, Cell Syst., 5 (2017), 251-267.e3. doi: 10.1016/j.cels.2017.08.014 |
[61] | A. Smith, Formative pluripotency: the executive phase in a developmental continuum, Development, 144 (2017), 365-373. doi: 10.1242/dev.142679 |
[62] | R. D. Brackston, E. Lakatos, M. P. H. Stumpf, Transition state characteristics during cell differentiation, PLOS Comput. Biol., 14 (2018), e1006405. doi: 10.1371/journal.pcbi.1006405 |
[63] | E. D. Siggia, Inter-cellular interactions and patterns: vertebrate development and embryonic stem cells, preprint, arXiv: 1801.09142v1. |