Research article Special Issues

Multimodal optimization using whale optimization algorithm enhanced with local search and niching technique

  • Received: 01 June 2019 Accepted: 10 September 2019 Published: 23 September 2019
  • For some real-world problems, it is desirable to find multiple global optima as many as possible. The multimodal optimization approach which finds multiple optima in a single run shows significant difference with the single modal optimization approach.The whale optimization algorithm (WOA) is a newly emerging reputable optimization algorithm. Its global search ability has been verified in many benchmark functions and real-world applications. In this paper, we propose a multimodal version of whale optimization algorithm (MMWOA). MMWOA enhances the multimodal search ability of WOA by using the niching technique and improves the local search efficiency of WOA by combining the Gaussian sampling technique. The algorithm has been tested on multimodal optimization benchmark functions recommended by CEC'2013 and on a multimodal optimization problem with non-linear constraints. Experimental results indicate that MMWOA has competitive performance compared with other state-of-the-art multimodal optimization algorithms.

    Citation: Hui Li, Peng Zou, Zhiguo Huang, Chenbo Zeng, Xiao Liu. Multimodal optimization using whale optimization algorithm enhanced with local search and niching technique[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 1-27. doi: 10.3934/mbe.2020001

    Related Papers:

  • For some real-world problems, it is desirable to find multiple global optima as many as possible. The multimodal optimization approach which finds multiple optima in a single run shows significant difference with the single modal optimization approach.The whale optimization algorithm (WOA) is a newly emerging reputable optimization algorithm. Its global search ability has been verified in many benchmark functions and real-world applications. In this paper, we propose a multimodal version of whale optimization algorithm (MMWOA). MMWOA enhances the multimodal search ability of WOA by using the niching technique and improves the local search efficiency of WOA by combining the Gaussian sampling technique. The algorithm has been tested on multimodal optimization benchmark functions recommended by CEC'2013 and on a multimodal optimization problem with non-linear constraints. Experimental results indicate that MMWOA has competitive performance compared with other state-of-the-art multimodal optimization algorithms.


    加载中


    [1] J. Kennedy, Particle Swarm Optimization, in Encyclopedia of Machine Learning (eds. C. Sammut and G.I. Webb), Springer US, (2010), 760-766.
    [2] X. Yang and D. Suash, Cuckoo Search via Lévy flights, 2009 World Congress on Nature & Biologically Inspired Computing, (2009), 210-214. Available from: https://ieeexploreieee.gg363.site/abstract/document/5393690/.
    [3] X. S. Yang, Firefly Algorithms for Multimodal Optimization, International symposium on stochastic algorithms, (2009), 169-178. Available from:https://linkspringer.gg363.site/chapter/10.1007/978-3-642-04944-614.
    [4] S. Mirjalili and A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Software, 95 (2016), 51-67.
    [5] M. A. E. Aziz, A. A. Ewees and A. E. Hassanien, Multi-objective whale optimization algorithm for content-based image retrieval, Multimedia Tools Appl., 77 (2018), 26135-26172.
    [6] A. N. Jadhav and N. Gomathi, WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering, Alexandria Eng. J., 57 (2018), 1569-1584.
    [7] M. K. Hassan, A. I. El Desouky, S. M. Elghamrawy, et al., A Hybrid Real-time remote monitoring framework with NB-WOA algorithm for patients with chronic diseases, Future Gener. Comput. Syst., 93 (2019), 77-95.
    [8] A. Mostafa, A. E. Hassanien, M. Houseni, et al., Liver segmentation in MRI images based on whale optimization algorithm, Multimedia Tools Appl., 76 (2017), 24931-24954. doi: 10.1007/s11042-017-4638-5
    [9] G. Hassan and A. E. Hassanien, Retinal fundus vasculature multilevel segmentation using whale optimization algorithm, Signal Image Video Process., 12 (2018), 263-270.
    [10] Y. Miao, M. Zhao, V. Makis, et al., Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal, Mech. Syst. Signal Process., 122 (2019), 673-691.
    [11] X. Zhang, J. Zhao, X. Zhang, et al., A novel hybrid compound fault pattern identification method for gearbox based on NIC, MFDFA and WOASVM, J. Mech. Sci. Technol., 33 (2019), 1097-1113.
    [12] D. Oliva, M. Abd El Aziz and A. Ella Hassanien, Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm, Appl. Energy, 200 (2017), 141-154.
    [13] O. S. Elazab, H. M. Hasanien, M. A. Elgendy, et al., Parameters estimation of single-and multiplediode photovoltaic model using whale optimisation algorithm, IET Renewable Power Gener., 12 (2018), 1755-1761. doi: 10.1049/iet-rpg.2018.5317
    [14] G. Ren, R. Yang, R. Yang, et al., A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm, Mod. Phys. Lett. B, 33 (2019), 1950075.
    [15] K. b. o. Medani, S. Sayah and A. Bekrar, Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system, Electr. Power Syst. Res., 163 (2018), 696-705.
    [16] K. S. Simhadri, B. Mohanty and S. K. Panda, Comparative performance analysis of 2DOF state feedback controller for automatic generation control using whale optimization algorithm, Optim. Control Appl. Methods, 40 (2019), 24-42.
    [17] D. Yousri, D. Allam and M. B. Eteiba, Chaotic whale optimizer variants for parameters estimation of the chaotic behaviour in Permanent Magnet Synchronous Motor, Appl. Soft Comput., 74 (2019), 479-503.
    [18] M. Abdel-Basset, D. El-Shahat and A. K. Sangaiah, A modified nature inspired meta-heuristic whale optimization algorithm for solving 0-1 knapsack problem, Int. J. Mach. Learn. Cybern., 10 (2019), 495-514.
    [19] J. Ghahremani-Nahr, R. Kian and E. Sabet, A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm, Expert Syst. Appl., 116 (2019), 454-471.
    [20] L. Wang, W. H. Wu, J. Y. Qi, et al., Wireless Sensor Network Coverage Optimization based on Whale Group Algorithm, Comput. Sci. Inf. Syst., 15 (2018), 569-583. doi: 10.2298/CSIS180103023W
    [21] I. Aljarah, H. Faris and S. Mirjalili, Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Comput., 22 (2018), 1-15.
    [22] M. Abdel-Basset, D. El-Shahat, I. El-henawy, et al., A Novel Whale Optimization Algorithm for Cryptanalysis in Merkle-Hellman Cryptosystem, Mobile Networks Appl., 23 (2018), 723-733. doi: 10.1007/s11036-018-1005-3
    [23] M. A. M. Majeed, A hybrid of WOA and mGWO algorithms for global optimization and analog circuit design automation, COMPEL-Int. J. Comput. Math. Electr. Electron. Eng., 38 (2019), 452-476.
    [24] V. K. Bohat and K. V. Arya, A new heuristic for multilevel thresholding of images, Expert Syst. Appl., 117 (2019), 176-203.
    [25] H. Li, J. Zhang and J. Yi, Computational source term estimation of the Gaussian puff dispersion, Soft Comput., 23 (2019), 59-75.
    [26] Y. Chen, R. Vepa and M. H. Shaheed, Enhanced and speedy energy extraction from a scaledup pressure retarded osmosis process with a whale optimization based maximum power point tracking, Energy, 153 (2018), 618-627.
    [27] M. Abdel-Basset, G. Manogaran, D. El-Shahat, et al., Integrating the whale algorithm with Tabu search for quadratic assignment problem: A new approach for locating hospital departments, Appl. Soft Comput., 73 (2018), 530-546.
    [28] I. G. Rajathi and W. G. Jiji, Chronic Liver Disease Classification Using Hybrid Whale Optimization with Simulated Annealing and Ensemble Classifier, Symmetry, 11 (2019), 33.
    [29] M. M. Mafarja and S. Mirjalili, Hybrid Whale Optimization Algorithm with simulated annealing for feature selection, Neurocomputing, 260 (2017), 302-312.
    [30] M. Bhowmik and P. Malathi, Spectrum Sensing in Cognitive Radio Using Actor-Critic Neural Network with Krill Herd-Whale Optimization Algorithm, Wireless Pers. Commun., 105 (2019), 335-354.
    [31] E. Emary, H. M. Zawbaa and M. Sharawi, Impact of Lèvy flight on modern meta-heuristic optimizers, Appl. Soft Comput., 75 (2019), 775-789.
    [32] Y. Khalil, M. Alshayeji and I. Ahmad, Distributed Whale Optimization Algorithm based on MapReduce, Concurr. Comp. Pract. E., 31 (2019), e4872.
    [33] X. Li, M. G. Epitropakis, K. Deb, et al., Seeking Multiple Solutions: An Updated Survey on Niching Methods and Their Applications, IEEE Trans. Evol. Comput., 21 (2017), 518-538.
    [34] B. Sareni and L. Krahenbuhl, Fitness sharing and niching methods revisited, IEEE Trans. Evol. Comput., 2 (1998), 97-106.
    [35] J. E. Fieldsend, Running Up Those Hills: Multi-modal search with the niching migratory multi-swarm optimiser, 2014 IEEE Congress on Evolutionary Computation, (2014), 2593-2600. Available from: https://ieeexploreieee.gg363.site/abstract/document/6900309.
    [36] R. Brits, A. P. Engelbrecht and F. van den Bergh, Locating multiple optima using particle swarm optimization, Appl. Math. Comput., 189 (2007), 1859-1883.
    [37] B. Y. Qu, P. N. Suganthan and J. J. Liang, Differential Evolution With Neighborhood Mutation for Multimodal Optimization, IEEE Trans. Evol. Comput., 16 (2012), 601-614.
    [38] N. Nekouie and M. Yaghoobi, A new method in multimodal optimization based on firefly algorithm, Artif. Intell. Rev., 46 (2016), 267-287.
    [39] H. Banati and R. Chaudhary, Multi-Modal Bat Algorithm with Improved Search (MMBAIS), J. Comput. Sci., 23 (2017), 130-144.
    [40] G. Jorge, C. Erik and A. Omar, Flower Pollination Algorithm for Multimodal Optimization, Int. J. Comput. Intell. Syst., 10 (2017), 627-646.
    [41] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82.
    [42] K. Deb and A. Saha, Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach, Proceedings of the 12th annual conference on Genetic and evolutionary computation, (2010), 447-454. Available from: https://dlacm.gg363.site/citation.cfm?id=1830568.
    [43] Z. Michalewicz and M. Schoenauer, Evolutionary Algorithms for Constrained Parameter Optimization Problems, Evol. Compu., 4 (1996), 1-32.
    [44] X. Li, Efficient differential evolution using speciation for multimodal function optimization, Proceedings of the 7th annual conference on Genetic and evolutionary computation, (2005), 873-880. Available from: https://dlacm.gg363.site/citation.cfm?id=1068156.
    [45] A. Petrowski, A clearing procedure as a niching method for genetic algorithms, Proceedings of IEEE International Conference on Evolutionary Computation, (1996), 798-803. Available from: https://ieeexploreieee.gg363.site/abstract/document/542703.
    [46] R. Thomsen, Multimodal optimization using crowding-based differential evolution, Proceedings of the 2004 Congress on Evolutionary Computation, (2004), 1382-1389. Available from: https://ieeexploreieee.gg363.site/abstract/document/1331058.
    [47] B. Y. Qu, P. N. Suganthan and S. Das, A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization, IEEE Trans. Evol. Comput., 17 (2013), 387-402.
    [48] Q. Yang, W. Chen, Z. Yu, et al., Adaptive Multimodal Continuous Ant Colony Optimization, IEEE Trans. Evol. Comput., 21 (2017), 191-205.
    [49] J. A. Goldbogen, A. S. Friedlaender, J. Calambokidis, et al., Integrative Approaches to the Study of Baleen Whale Diving Behavior, Feeding Performance, and Foraging Ecology, BioScience, 63 (2013), 90-100. doi: 10.1525/bio.2013.63.2.5
    [50] W. A. Watkins and W. E. Schevill, Aerial Observation of Feeding Behavior in Four Baleen Whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus, J. Mammal., 60 (1979), 155-163.
    [51] S. Weiguo, S. Swift, Z. Leishi, et al., A weighted sum validity function for clustering with a hybrid niching genetic algorithm, IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 35 (2005), 1156-1167. doi: 10.1109/TSMCB.2005.850173
    [52] H. Li and J. Zhang, Fast source term estimation using the PGA-NM hybrid method, Eng. Appl. Artif. Intell., 62 (2017), 68-79.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5722) PDF downloads(931) Cited by(15)

Article outline

Figures and Tables

Figures(7)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog