Citation: Hui Li, Peng Zou, Zhiguo Huang, Chenbo Zeng, Xiao Liu. Multimodal optimization using whale optimization algorithm enhanced with local search and niching technique[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 1-27. doi: 10.3934/mbe.2020001
[1] | J. Kennedy, Particle Swarm Optimization, in Encyclopedia of Machine Learning (eds. C. Sammut and G.I. Webb), Springer US, (2010), 760-766. |
[2] | X. Yang and D. Suash, Cuckoo Search via Lévy flights, 2009 World Congress on Nature & Biologically Inspired Computing, (2009), 210-214. Available from: https://ieeexploreieee.gg363.site/abstract/document/5393690/. |
[3] | X. S. Yang, Firefly Algorithms for Multimodal Optimization, International symposium on stochastic algorithms, (2009), 169-178. Available from:https://linkspringer.gg363.site/chapter/10.1007/978-3-642-04944-614. |
[4] | S. Mirjalili and A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Software, 95 (2016), 51-67. |
[5] | M. A. E. Aziz, A. A. Ewees and A. E. Hassanien, Multi-objective whale optimization algorithm for content-based image retrieval, Multimedia Tools Appl., 77 (2018), 26135-26172. |
[6] | A. N. Jadhav and N. Gomathi, WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering, Alexandria Eng. J., 57 (2018), 1569-1584. |
[7] | M. K. Hassan, A. I. El Desouky, S. M. Elghamrawy, et al., A Hybrid Real-time remote monitoring framework with NB-WOA algorithm for patients with chronic diseases, Future Gener. Comput. Syst., 93 (2019), 77-95. |
[8] | A. Mostafa, A. E. Hassanien, M. Houseni, et al., Liver segmentation in MRI images based on whale optimization algorithm, Multimedia Tools Appl., 76 (2017), 24931-24954. doi: 10.1007/s11042-017-4638-5 |
[9] | G. Hassan and A. E. Hassanien, Retinal fundus vasculature multilevel segmentation using whale optimization algorithm, Signal Image Video Process., 12 (2018), 263-270. |
[10] | Y. Miao, M. Zhao, V. Makis, et al., Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal, Mech. Syst. Signal Process., 122 (2019), 673-691. |
[11] | X. Zhang, J. Zhao, X. Zhang, et al., A novel hybrid compound fault pattern identification method for gearbox based on NIC, MFDFA and WOASVM, J. Mech. Sci. Technol., 33 (2019), 1097-1113. |
[12] | D. Oliva, M. Abd El Aziz and A. Ella Hassanien, Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm, Appl. Energy, 200 (2017), 141-154. |
[13] | O. S. Elazab, H. M. Hasanien, M. A. Elgendy, et al., Parameters estimation of single-and multiplediode photovoltaic model using whale optimisation algorithm, IET Renewable Power Gener., 12 (2018), 1755-1761. doi: 10.1049/iet-rpg.2018.5317 |
[14] | G. Ren, R. Yang, R. Yang, et al., A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm, Mod. Phys. Lett. B, 33 (2019), 1950075. |
[15] | K. b. o. Medani, S. Sayah and A. Bekrar, Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system, Electr. Power Syst. Res., 163 (2018), 696-705. |
[16] | K. S. Simhadri, B. Mohanty and S. K. Panda, Comparative performance analysis of 2DOF state feedback controller for automatic generation control using whale optimization algorithm, Optim. Control Appl. Methods, 40 (2019), 24-42. |
[17] | D. Yousri, D. Allam and M. B. Eteiba, Chaotic whale optimizer variants for parameters estimation of the chaotic behaviour in Permanent Magnet Synchronous Motor, Appl. Soft Comput., 74 (2019), 479-503. |
[18] | M. Abdel-Basset, D. El-Shahat and A. K. Sangaiah, A modified nature inspired meta-heuristic whale optimization algorithm for solving 0-1 knapsack problem, Int. J. Mach. Learn. Cybern., 10 (2019), 495-514. |
[19] | J. Ghahremani-Nahr, R. Kian and E. Sabet, A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm, Expert Syst. Appl., 116 (2019), 454-471. |
[20] | L. Wang, W. H. Wu, J. Y. Qi, et al., Wireless Sensor Network Coverage Optimization based on Whale Group Algorithm, Comput. Sci. Inf. Syst., 15 (2018), 569-583. doi: 10.2298/CSIS180103023W |
[21] | I. Aljarah, H. Faris and S. Mirjalili, Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Comput., 22 (2018), 1-15. |
[22] | M. Abdel-Basset, D. El-Shahat, I. El-henawy, et al., A Novel Whale Optimization Algorithm for Cryptanalysis in Merkle-Hellman Cryptosystem, Mobile Networks Appl., 23 (2018), 723-733. doi: 10.1007/s11036-018-1005-3 |
[23] | M. A. M. Majeed, A hybrid of WOA and mGWO algorithms for global optimization and analog circuit design automation, COMPEL-Int. J. Comput. Math. Electr. Electron. Eng., 38 (2019), 452-476. |
[24] | V. K. Bohat and K. V. Arya, A new heuristic for multilevel thresholding of images, Expert Syst. Appl., 117 (2019), 176-203. |
[25] | H. Li, J. Zhang and J. Yi, Computational source term estimation of the Gaussian puff dispersion, Soft Comput., 23 (2019), 59-75. |
[26] | Y. Chen, R. Vepa and M. H. Shaheed, Enhanced and speedy energy extraction from a scaledup pressure retarded osmosis process with a whale optimization based maximum power point tracking, Energy, 153 (2018), 618-627. |
[27] | M. Abdel-Basset, G. Manogaran, D. El-Shahat, et al., Integrating the whale algorithm with Tabu search for quadratic assignment problem: A new approach for locating hospital departments, Appl. Soft Comput., 73 (2018), 530-546. |
[28] | I. G. Rajathi and W. G. Jiji, Chronic Liver Disease Classification Using Hybrid Whale Optimization with Simulated Annealing and Ensemble Classifier, Symmetry, 11 (2019), 33. |
[29] | M. M. Mafarja and S. Mirjalili, Hybrid Whale Optimization Algorithm with simulated annealing for feature selection, Neurocomputing, 260 (2017), 302-312. |
[30] | M. Bhowmik and P. Malathi, Spectrum Sensing in Cognitive Radio Using Actor-Critic Neural Network with Krill Herd-Whale Optimization Algorithm, Wireless Pers. Commun., 105 (2019), 335-354. |
[31] | E. Emary, H. M. Zawbaa and M. Sharawi, Impact of Lèvy flight on modern meta-heuristic optimizers, Appl. Soft Comput., 75 (2019), 775-789. |
[32] | Y. Khalil, M. Alshayeji and I. Ahmad, Distributed Whale Optimization Algorithm based on MapReduce, Concurr. Comp. Pract. E., 31 (2019), e4872. |
[33] | X. Li, M. G. Epitropakis, K. Deb, et al., Seeking Multiple Solutions: An Updated Survey on Niching Methods and Their Applications, IEEE Trans. Evol. Comput., 21 (2017), 518-538. |
[34] | B. Sareni and L. Krahenbuhl, Fitness sharing and niching methods revisited, IEEE Trans. Evol. Comput., 2 (1998), 97-106. |
[35] | J. E. Fieldsend, Running Up Those Hills: Multi-modal search with the niching migratory multi-swarm optimiser, 2014 IEEE Congress on Evolutionary Computation, (2014), 2593-2600. Available from: https://ieeexploreieee.gg363.site/abstract/document/6900309. |
[36] | R. Brits, A. P. Engelbrecht and F. van den Bergh, Locating multiple optima using particle swarm optimization, Appl. Math. Comput., 189 (2007), 1859-1883. |
[37] | B. Y. Qu, P. N. Suganthan and J. J. Liang, Differential Evolution With Neighborhood Mutation for Multimodal Optimization, IEEE Trans. Evol. Comput., 16 (2012), 601-614. |
[38] | N. Nekouie and M. Yaghoobi, A new method in multimodal optimization based on firefly algorithm, Artif. Intell. Rev., 46 (2016), 267-287. |
[39] | H. Banati and R. Chaudhary, Multi-Modal Bat Algorithm with Improved Search (MMBAIS), J. Comput. Sci., 23 (2017), 130-144. |
[40] | G. Jorge, C. Erik and A. Omar, Flower Pollination Algorithm for Multimodal Optimization, Int. J. Comput. Intell. Syst., 10 (2017), 627-646. |
[41] | D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67-82. |
[42] | K. Deb and A. Saha, Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach, Proceedings of the 12th annual conference on Genetic and evolutionary computation, (2010), 447-454. Available from: https://dlacm.gg363.site/citation.cfm?id=1830568. |
[43] | Z. Michalewicz and M. Schoenauer, Evolutionary Algorithms for Constrained Parameter Optimization Problems, Evol. Compu., 4 (1996), 1-32. |
[44] | X. Li, Efficient differential evolution using speciation for multimodal function optimization, Proceedings of the 7th annual conference on Genetic and evolutionary computation, (2005), 873-880. Available from: https://dlacm.gg363.site/citation.cfm?id=1068156. |
[45] | A. Petrowski, A clearing procedure as a niching method for genetic algorithms, Proceedings of IEEE International Conference on Evolutionary Computation, (1996), 798-803. Available from: https://ieeexploreieee.gg363.site/abstract/document/542703. |
[46] | R. Thomsen, Multimodal optimization using crowding-based differential evolution, Proceedings of the 2004 Congress on Evolutionary Computation, (2004), 1382-1389. Available from: https://ieeexploreieee.gg363.site/abstract/document/1331058. |
[47] | B. Y. Qu, P. N. Suganthan and S. Das, A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization, IEEE Trans. Evol. Comput., 17 (2013), 387-402. |
[48] | Q. Yang, W. Chen, Z. Yu, et al., Adaptive Multimodal Continuous Ant Colony Optimization, IEEE Trans. Evol. Comput., 21 (2017), 191-205. |
[49] | J. A. Goldbogen, A. S. Friedlaender, J. Calambokidis, et al., Integrative Approaches to the Study of Baleen Whale Diving Behavior, Feeding Performance, and Foraging Ecology, BioScience, 63 (2013), 90-100. doi: 10.1525/bio.2013.63.2.5 |
[50] | W. A. Watkins and W. E. Schevill, Aerial Observation of Feeding Behavior in Four Baleen Whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus, J. Mammal., 60 (1979), 155-163. |
[51] | S. Weiguo, S. Swift, Z. Leishi, et al., A weighted sum validity function for clustering with a hybrid niching genetic algorithm, IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 35 (2005), 1156-1167. doi: 10.1109/TSMCB.2005.850173 |
[52] | H. Li and J. Zhang, Fast source term estimation using the PGA-NM hybrid method, Eng. Appl. Artif. Intell., 62 (2017), 68-79. |